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1. MATHEMATICAL PRELIMINARIES
1.1.  Kolmogorov Forward and Backward Equations

The time evolution of the transition probability density function is governed by Kolmogorov
forward and backward equations, which will be introduced as follows, without loss of generality, in multi-
dimension.

1.1.1. Kolmogorov Forward Equation

Let’s consider the following m-dimensional stochastic spot process X; € R™ driven by an n-
dimensional Brownian motion W; whose correlation matrix p is given by pdt = dW,dW/

dX, = A(t, X)) dt + B(t, X)W, (1)

mx1 mx1 mxn nx1i

We derive the dynamics of h, where h: R™ — R is a scalar-valued Borel-measurable function only on

variable X,
1
dh(X,) = J, dX,+= dXt H, dX, = J,Adt + J,BdW, + = dW/B'H,BdW, (2)
1x1 1Xm mx1 2 1Xm mxm mx1 2

where J, is the 1 x m Jacobian (i.e., the same as gradient if h is a scalar-valued function) and H, the

m X m Hessian (with subscripts now denoting the indices of vector components)

92h 92h

I = (_ _)’ H, = : : (3)
"X, 0% " a2h a2h
X, .0X, Xz,

Expanding the expression in (2), we have

m m n m

oh doh 1
dh(X) = ) S At ) 5o ) BudWi + Z
i=1 i=1 k=1 j=1

n
Z lkplj jkdt

(4)




where ¥ = BpB' is the m X m instantaneous variance-covariance matrix of dX. Integrating on both sides

of (4) from initial time s to time t, we have

) = k0 = [ §Alax 2§ s |4t [ D5 B ©
s i

i,j=1 i=1 k=1

Taking expectation on both sides of (5), we get (using notation E,[-] = E[|F;])

LHS = E,[h(X)] — h(X,) = f hePextsadx — he
N

RHS=fSt§1:Es[A ]d“+ fz [”axaxl

where p; x5 IS the transition probability density function having X, = x at t given X; = a at s (i.e., if

(6)

we solve the equation (1) with the initial condition X; = @ € R™, then the random variable X, = x € 2

has a density p, s in the x variable at time t). Differentiating (6) with respect to ¢ on both sides, we get

m
Petitac = e [45 Z
—— = E.|A; =
Lh" ar & £ ox; ”axax
l=
prtxlsa la dx+22fptx|sa l]a a dx

If we assume £2 = R™ and also assume the probability density p and its first derivatives dp/dx; vanish at

()

a higher order of rate than h and dh/0x; as x; » to Vi =1,:--,m, we can integrate by parts for the

right hand side of (7), once for the first integral and twice for the second

Oh, _ 9(Aip)
Alpa_dx A; hxplx 200 AX; — hxwdx (8)
; 0 L

_v_/
=0



e _ O(Z'Up) ahx
dx; — —dx
0 axl- axj

+ o0
9%(5;;
AsiP) dx; + f thdx
o 0 axiaxj

wvere [ = [ [ [ [ O s
; R JRJR JR

Plugging the results of (8) into (7), we have

m
fh a_pdx:_th 0(4p) th *(Zyp)
L ot L), o T2 * ox0%;
i=

9)
m
a(ALP) 1" 92(2yp)
= - ———= |dx=0
_ axl 2 £a Ox;0x;
1—1 1,j=1
By the arbitrariness of function h, we conclude that for any x € 2 the density function p satisfies
m m
o N0 1< 9*(Zyp)
- - =0, X = BpB'’
it ax, 2 4u oxox p (10)

i=1 i,j=1
This is the multi-dimensional Fokker-Planck Equation (a.k.a. Kolmogorov Forward Equation) [1]. In this
equation, the s and « are held constant, while the t and x are variables (called “forward variables™). In the

one-dimensional case, it reduces to

dp 0(Ap) 102%(B*p)
- __ - 11
ot + 0x 2 0x2 0 (11

where A = A(t,x) and B = B(t, x) are then scalar functions.

1.1.2. Kolmogorov Backward Equation

Let’s express conditional expectation g(t, X;) = E.[h(X7)]. Since forany t < v < T we have

9t X)) = E[h(Xp)] = [Et[IEv[h(XT)]] = E[g(, X,)] (12)



the g(t,X;) is a martingale by the tower rule (i.e., If H holds less information than G,

E[E[X|G]|#] = E[X|H]). The dynamics of the g(t, X;) is given by

9 1 9 1
dg =L at+ J, dX, +=dx; H, dX, = ‘fdt +JgAdt + JyBAW, + dW/B'H,BdW,

a 1xm mxXx1 1xm me mx1 a

where ], is the Jacobian and H, the Hessian of g with respect to variable X

ag d%g
[] ]i = a_Xi’ [Hg]l-j = aXlaxj

Expanding (13), we have

- +ZA‘6X zzz”axax dt+ZaX ZB”‘dW“

i,j=1
Since g(t, X;) is a martingale, the dt-term must vanish, which gives
RO
Z lOX 2 b GX ax =0
i,j=1

This is the multi-dimensional Feynman-Kac formulal.

then

(13)

(14)

(15)

(16)

Using the transition probability density pr .. for X, = x att and X; = g at T, we can further

write the expectation as
Gex = BolhCX)] = | hyprgiedf
0

The formula (16) defines that

m m
) 9 1 02
5 D At ). By || hebrsteads =0
i=1 l i,j=1 ' J .

m

=>jh ap+z,4 il Z af =0

gﬂat.lia 2 ”aa-ﬁ_

l:

i,j=1

By the arbitrariness of h function, we must have

! https://en.wikipedia.org/wiki/Feynman-Kac formula

(17)

(18)


https://en.wikipedia.org/wiki/Feynman-Kac_formula

Q;l_d

m m

E w1 E S = BpB' (19)
i —_ ’ = Bp

L "ox; 2 = b axlax]

This is the multi-dimensional Kolmogorov Backward Equation. In this equation, the T and g are held

constant, while the t and x are variables (called “backward variables™). In the 1-D case, it reduces to
—+Aa—x+—BZ—=0 (20)
where A = A(t,x) and B = B(t, x) are again scalar functions.
1.2. Tanaka’s Formula
Tanaka’s formula can be seen as the analogue of 1t6’s lemma for the (nonsmooth) absolute value
function f(X) = |X| with Z—; = Sgn(X) and 327’; = 26(X). Assume that X, is a semimartingale (e.g., Ito
processes, which satisfy a stochastic differential equation of the form dX, = a,dt + b,dW;, are

semimartingales), then for every fixed K € R

t +1, x>0
X — K| = |Xs — K| +f Sgn(X, — K)dX,, + LX(X), Sgn(x) =40, x=0
s -1, x<0

(21)

t 1 t
LIt((X) = j S(Xu - K)d<X:X)u = !al_r)%zj H{Xue(K—s,K+£)}d<XrX>u
s s

where d(X, X),, is the quadratic variation and L¥ (X) is the local time spent by X, around K between s and
t, which can be thought of occupation density of process X; around K during that period [2] [3]. For a

standard Brownian motion By, its local time reads

t
IB, — K| = |B, — K| + j Sen(B, — K)dB, + LX(B)
S

t 1 t
1) = [ 608, — Kydu = lim= | Ugp,cqenceendu (22)
S S

1
= lim— |{u € [s,t]|B, € (K — &, K + &)}
£-02¢

In differential form, (21) transforms into



d|X, — K| = Sgn(X, — K)dX, + dLX(X), dLX¥(X) = §(X, — K)d(X, X), (23)
where the differential operates on the t-variable. Further, notice that the terminal payoff function of call

or put option can be written as

|Xt_K|+Xt_K
2 )

(Xt_K)+: 2

We may derive the dynamics of the payoff function as

1 1 1 1 1

200X, —K)—1

1 1

1

(25)
1 1 1 1 1
1
= (O(Xt - K) - 1)dXt + 55(Xt - K)d(X,X)t
1
where 0 is the Heaviside step function® and § is the Dirac delta function?.
1.3.  Generalized Gydngy Theorem
Let W be an N-dimensional Brownian motion, and
dX(t) = u(t)dt + o(t)dW (t) (26)

0, x<0

! Heaviside step function: ©(x) ={1/2 x = 0. It can be viewed informally as the integral of the Dirac delta
1, x>0

function: ©(x) = f_xw S(wdu.

2 Dirac delta function: §(x) = {og i ;:t 8 and subject to constraint ffooo 6(u)du = 1. It can be viewed informally as

the derivative of the Heaviside step function: §(x) = dO(x)/dx.

10



be a K-dimensional Ito process where u(t) is a bounded K-dimensional adapted process, and o (t) is a
bounded K x N-dimensional adapted process such that o(t)o(t)" is uniformly positive definite. There
exist deterministic measurable functions £ and & such that

f(t,x) = E[u(®)[X(t) = x]

(27)
6(t,x)6(t,x) = E[o(0)a(0)'|X(t) = x]
and there exists a weak solution to the stochastic differential equation
dX(t) = a(t, X(©))dt + 6(¢, X())dW (¢) (28)

such that the Markov process X (t) admits the same marginal probability distribution as that of X (t) for
every t > 0. The W denotes another Brownian motion, possibly on another space. This is the generalized
Gydngy theorem in multi-dimension [4] [5] [6] [7] [8].

Put it simply, Gydngy theorem states that a given stochastic differential equation (SDE) with
stochastic drift and diffusion coefficients, can be mimicked by another constructed process, which has
deterministic coefficients. The solutions of the two equations have the same marginal probability
distributions. It links local volatility models in the form of (28) to other diffusion models in the more
general form of (26) that are capable of generating the same implied volatility surface. The local volatility
model is in some sense the simplest among the diffusion models capable of reproducing the implied
volatility surface. This is in analogy to the fact that there can be countless 3D objects with different shapes
casting however identical shadows on the ground. As in (27), local volatility 6(t, x) can be regarded as
the conditional risk-neutral expectation of the instantaneous variance of the asset X (t), given that the asset
level at the future time t is x. This is analogous to the known relationship between the forward and future
spot interest rates where the forward rate is the forward-risk-adjusted expectation of the instantaneous
future spot rate. The local volatility represents some kind of average over all possible instantaneous
volatilities at a certain point in time in a stochastic volatility world [9].

1.4.  Approximation by Discrete Markov Chain

11



To simplify a model, we sometimes seek to approximate a continuous (Markovian) stochastic
process by a Markov chain process on a discrete set of states which jumps with certain jump intensities
between neighboring states. Suppose there are N states placed a uniform width a, apart and centered

about zero, we have a discrete stochastic process A; such that
Ay =ia, for iy €e{-m,—m+1,---,m—1,m}, m=—— (29)

where i, denotes the discrete state recorded at time t. The A, process jumps between neighboring points
with rightwards (increasing value) intensities (N —1,N — 2,---,1,0)h; and with leftwards (decreasing
value) intensities (0,1,---,N — 2, N — 1)h, where h; is a unit intensity to be calibrated. In other words, if
we are in the leftmost state, e.g., i; = —m, we may only jump one step right, and do so with intensity
(N — 1)h,;. If we are in the next state along, we may move one step left with intensity h, or one step right
with intensity (N — 2)h,, and so on. The key property of these intensities is that the total jump intensity
in each state is (N — 1)h, with only the probability of going in each direction changing. Below we
summarize the probability P(i;,¢|i;) of a jump from state i, to i,, A, in an infinitesimal increment of
time At
it =1, PQaclic) = (m+i)hAt
it = lerar = o P(irsaclic) =1 —2mh At (30)
it +1, P(igaclic) = (m—i)hAt
After sufficient time, the process can reach an equilibrium at which the occupation probability of each
state becomes stationary (i.e., time-invariant). Let x be the stationary probability vector. By definition, we

have

X'(k) = ]P)t(k) = t_ILTOOIP)[lt = klls = p]' p'k € {—m,---,m} (31)

The vector-valued stationary probability P, (k) is characterized by the Markov chain transition matrix M
of the process, which is derived from (30). Its (i, j)-entry defines the transition probability from state j to

state i within time At

12



(m+j)hAt, Ifi=j—1  (superdiagonal)

. 1—-2mhAt, Ifi=j (main diagonal) ..
M ) = t ,J Ev—m, -, 32
@) (m—j)hAt, Ifi=j+1  (subdiagonal) L€ t=m, e m) (32)
0, Otherwise

Mathematically speaking, the stationary probability vector x is an eigenvector of the transition matrix M

associated with the eigenvalue 1, e.g., Mx = x. For a matrix with strictly positive entries (or, more

generally, for an irreducible aperiodic stochastic matrix), the stationary probability vector x is unique and
can be computed by observing that for any j we have the following limit

lim M (i, j) = x(i) (33)

In our model, the state occupation at equilibrium follows a binomial distribution B(N — 1,1/2)

with probability mass function

1 (2m)!
22m (m+ k) (m— k)l

P.(k) = ke{-m-m+1,---,m—1,m} (34)

This can be proved by finding an equilibrium in the inflow and outflow of the k-th state occupation
probability at time t for an infinitesimal time interval At, that is

pirflow (k) = M(k,k — 1)P.(k — 1) + M(k, k)P, (k) + M(k, k + DP,(k + 1)

POutlow () = M(k — 1, k)Pe(k) + M(k, k)P, (k) + M(k + 1, k)P, (k) <)
where
M(k,k —1) = (m —k + 1)h.At, M(k,k +1) = (m+ k + 1)h At
M(k—1,k) = (m+ k)hAt, M(k + 1,k) = (m — k)h At 0
The probability net flow at the k-th state within time At can then be calculated as
PG (k) — PRSI (k)
@37)

= Mk, k — DP.(k — 1) + Mk, k + DP,(k + 1) — M(k — 1, k)P, (k) — M(k + 1, k)P, (k)

13



(Zm)'hA( m—k+1 N m+k+1
—em M\t k—Dim—k+ 1) (m+k+ D (m—k—1)!

m+k m—k
_(m+k)!(m—k)!_(m+k)!(m—k)!>

=0
Since the probability net flow is zero for any of the states (i.e., Mx = x) at time t, this shows that state
occupation at equilibrium follows a binomial distribution with probability mass function (34).
Knowing the probability mass function (34), we can compute the mean and variance of the A,

process, providing the binomial theorem, which says

(a+B)” z oo (39)

By definingm =n/2 and i = j —n/2, we can derive its mean as

l m).
E[A,] = Z ia,P,(i) = Z
Ad= ), laPD=a ) T rm—n1 2n '(n )
i=—m i=—m
n | n 1
B Jj_n na; z _na
‘atzoznj!(n—j)! 2 Lion '(n I 2n —1)'(n D2 (39)
]= J=
p
= "zl PP %4, withp=n—1andk=j1
= Zk_ PR -0 z Y with p =n an =j

and its variance as

m

V[A.] = E[4Z] - (E[4,])* = E[A] = E[4,(4, — D] = z i(i — DafP, ()

i=—m

, i i(i—1) (2m)! ~ Zzn:(j—%)(j—%—l) n!

-4 22m (m+ ) (m—10)! g 2n iTn—))! (40)
i=—m Jj=0
zn:j —-n + —J 5 nl n! nzag +n2a§ +na§
- TCEn G-Il 2 4 2

j=0

14



22 na? ma?

_n(n—l)a?il L _Mar nar_ ith p=n—2and k= j —2
T d LwkGp-D 4 2 2 withp=n=2andk=J

We can also work out the expectation and variance of infinitesimal change in discrete stochastic
process A;. By noting that the change in A, may come from both the change in a; and the jump in i;, we

have

1 da
]Et[d/lt] = itdat + at]Et[dlt] = itdat - th/ltdt = <_d_tt - th) Atdt

e (41)
VeldA,] = E([(dA, — [Et[d/lt])z] = E¢[(a.di, + th/ltdt)z] = at,%IEt[(dit)z] = thtagdt
where we further derive
Et[dit] = [Et[it+dt - it]
= _thhtdt
(42)

Ee[(di)?] = E[(igrar — i)?] = Eelifvqr] — 20 Ee[igrqe] + i7
= (i, — 1)?(m + ip)hdt + i2(1 — 2mh,dt) + (i, + 1)*(m — i) h.dt
— 20, (iy — 2izh dt) + i2 = 2mh,dt
By matching E.[dA;] and V,[dA,] to their counterparts, we can approximate a continuous stochastic
process by the discrete process ;.
A good analogy for the jumps in the discrete process would be the failures in reliability theory.
We may assume that the probability of a failure that will occur in an infinitesimal time interval [¢t, t + At]
is h,At with intensity (i.e., hazard rate) h;, that is

Plt<t<t+At] Plt<t+At]-Plr<t]
hAt = Pt < t + At]t > t] = P 1] = Plc> 1] (43)

where 7 denote the time when a failure occurs and IP[t > t] is the survival probability. As At — 0, we

can write (43) as

15



Plt>t+At]-Plt>t]  dlogP[r > ]

=—li = 44

he Alglo P[T > t]At dt (44)
And the conditional survival probability would be

Plr > tlr > s] = o>t _ fthd 45

T T S—P[T>S]—exp ) Ldu (45)

which will be used later to calculate jump probability between two jump times.

1.4.1. Ornstein-Uhlenbeck Process

For a simple Ornstein-Uhlenbeck Process Y; below, we can find its solution together with its mean

and variance as follows

t
dY, = —xY,dt + {dZ,, Y, =e Ty, +¢ f e *t-Wqz ., Y, =N(0,y%)
v
{2
Blte] = e, ElN] =0, VIN] = eyt (Lo e ) 2o

. . ¢?
— a2 2 —
,lclgr(l) VY] =y* + 2t — ), tlggo VY] = o

E.[dY;] = —«kYdt, V,[dY,] =%dt, s<v<t
We want to match the discrete A, process to the continuous Ornstein-Uhlenbeck process Y; in (46) by
equating the mean and variance in (41) to the counterparts in (46), that is, we want to have E,[dA;] =
E.[dY;] and V.[dA,] = V,.[dY;]. This gives a first order linear ordinary differential equation below,
whose solution can be obtained given that the discrete process must reproduce the variance of the

continuous process, i.e., V[A;] = V[Y;] = v, with V[4,] in (40)

1 da;
EldA] = <a_E - th) Apdt = —KAdt, Vi[dA,] = 2mhaidt = {*dt
t
1da daf 2¢?
== a_td_tt = th — K, thtag = (2 = d_tt = —ZKCl? + ? (47)
2v z
== a? = _t, ht = (—

N 4v,
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However, the jump intensity h, in (47) will blow up when t approaches zero if the initial uncertainty y 2
is zero, rendering the transition matrix ill-posed. We deal with this by assuming zero transition intensities
until some time has passed, which is numerically acceptable as prices should not be particularly sensitive
to the volatility dynamics over the first week or so. Since h; is a function of ¢, the transition probability

for a small timestep from v to t for s < v < t can be integrated analytically as below

(2 2K(t-s)
t 2 rtq 1 y2+3—-(e -1 K(t—v) 1 v
fhuduzc—f—duz—lg 25 )| _ ) Lioe e
v v

0 og— (48)
Yy 4 yz + % (eZK(U—S) _ 1) 2 4 Vy

There are two ways to handle the discrete jump process numerically: 1) evolve the process with
transition probability over a sequence of time intervals (with error ~At), and 2) directly model the jump
times, ¢;. For PDE implementation, it is necessary to use the first method. For Monte Carlo simulation,
the second is more efficient. Noting that the total jump intensity is 2mh;, which is state independent, the
jump probability from last jump time ¢; to next jump time t;,, can be derived from (45) as

]P’[T < tj+1|r > tj] =1—exp (—Zm tj+1hudu> (49)
tj
We can simulate the next jump time by drawing a uniform random number z~U (0,1). The next jump time

tj+1, Which is random, can be derived from (48) and (49) by

2
eZK(tj—S) + Z?Z -1 ZK)/Z
]P’[T < tj+1|r > tj] =z=t4y1 =5+ ﬂlog > — 72 +1 (50)
(1-2z)m

Once the next jump time is simulated, one can draw another uniform random number to find if the state

should jump left or right according to the respective jump intensities.
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1.4.2. Wiener Process

To match the discrete A, process to a Wiener process W; (i.e., standard Brownian motion process),

we would require that

dloga
E,[dA,] = ( df t_ th) Adt=0, V,[dA]=2mh.aldt = dt
(51)
dloga 2(t—s) 1
dt : = th, thta? = 1 - a? = m B ht = 4(t — S’)
From (40), we see that V[A,;] = V[W;] =t —s.
In addition, using (49) and the integral
jThd —1fT L ou=1 (T_S) (52)
Lo YTy L U—Ss YT\ s
we can derive the next jump time ¢;,, for simulation as
t] —S
tj+1 =s+ 2 (53)
(1—-z)m

where z~U(0,1) is again a uniform random number.
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2. FX OPTION MARKET CONVENTIONS

2.1.  Option Trading Strategies

In the following, we will introduce a few simple trading strategies of vanilla options, which are

are liquidly traded in FX markets. Letting X, denote the FX spot observed at time t and K the strike value,

we may plot the payoff of each instrument as a function of the terminal FX spot X level as follows.

2.1.1. Single Call and Put

The figures below depict the payoff functions of vanilla options.

Long a Put

2.1.2. Call Spread and Put Spread

A

PL

Long a Call

Short a Call

A call spread is a combination of a long call and a short call option with different strikes K; < K.

A put spread is a combination of a long put and a short put option with different strikes. The figure below

shows the payoff functions of a call spread and a put spread.

/

CallSpread = C(K;) — C(K;)

2.1.3. Risk Reversal, Straddle and Strangle

PutSpread = P(K,) — P(K;)

19



A risk reversal (RR) is a combination of a long call and a short put with different strikes K; < K.

This is a zero-cost product as one can finance a call option by short selling a put option. The figure below

shows the payoff function of a risk reversal.

/

RiskReversal = C(K;) — P(K,)

A straddle is a combination of a call and a put option with the same strike K. A strangle is a

combination of an out-of-money call and an out-of-money put option with two different strikes K; <

K,y < K. The figure below shows the payoff functions of a straddle and a strangle

A

PL

Straddle = C(K) + P(K)

2.1.4. Bultterfly

Strangle = C(K;) + P(K5)

A butterfly (BF) is combinations of a long strangle and a short straddle. The figure below shows

the payoff function of a butterfly

A

PL

2.2.  Black-Scholes Formula

20
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K, < K, Ky < K,



Currency pairs are commonly quoted using ISO codes in the format FORDOM, where FOR and
DOM denote foreign and domestic currency respectively. For example, in EURUSD, the EUR denotes
the foreign currency or currencyl and USD the domestic currency or currency2. The rate of EURUSD
tells the price of one euro in USD.

In Black-Scholes model, FX spot rate is assumed to follow a geometric Brownian motion. Under
domestic risk neutral measure, the FX spot is characterized by the following stochastic differential
equation with a drift » — 7 and a volatility o

dx, A _
X, = (r — 7)dt + odW, (54)

where the r and 7 are the domestic and foreign risk free rate respectively (the accent hat “~” here denotes
a counterpart in the foreign economy, e.g., # is the foreign risk free rate). With the assumption of
deterministic interest rates, an option on the FX spot with a strike K can be valued in Black model as
V =PB(w,K,0,7) = 0oPXP(wd,) — wPKP(wd_)
(55)
Vp = B(w,K,0,7) = oFP(wd,) — wK®(wd_)
where V is the present value, V undiscounted value, w = 1 or — 1 for call or put, T = T — t for term to

maturity, ® for standard normal cumulative density function, and d,. and d_ as follows

1 F oVt
d_=——Ilog—— — and d, =d_+oVt (56)
e Bk 2 +

In (55), the P, and P, ;- denote the domestic and the foreign zero coupon bond price (or equivalently the
discount factors if rates are deterministic), respectively. The FX forward F is given by the covered interest
rate parity (i.e., the returns from investing domestically must be equal to the returns from investing abroad

to be arbitrage-free)

p T R T
Fer = XtPL'T, P r =exp <—f rudu> , P.r =exp <—f fudu> (57)
t t

t,T
FX options are usually physically settled (i.e., upon exercise at maturity, the buyer of a EURUSD call
receives notional N amount in EUR and pays NK amount in USD).
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Black-Scholes pricing formula can be easily derived from arbitrage-free pricing

(Xr — K X 1{X; > K} _ [1{x; > K}
tht[ M—T_ — KM,E, —
X1 > K] 14X, > K]
= X,EX [T{X—T} — KP, ET [% ,  Change M, » X, = M,X,, M, - Py,
t i T,T
_ 1YXr > K}
= M, X,E¥ ly — KP,+ET [1{X; > K}]
My | (58)

= P, X E¥[1{X; > K}] — KP,7El[1{X; > K}],  assuming deterministic foreign rates

= P, 1 X, P¥[ Xy > K] — KP, 7P} [X7 > K]

= P, r X, PX[X; > K] — KPP, [ X7 > K], assuming deterministic domestic rates

= PX®d(d,) — PKP(d_)
where P¥[X; > K] and PT[X; > K] are both conditional probabilities of spot finishing in-the-money at
maturity. The P¥[X; > K] is computed under the measure associated with the foreign money market
account denominated in domestic currency X, = M, X, as the numeraire, whereas the PT[X; > K] is
computed under T-forward measure associated with domestic zero coupon bond P, r as the numeraire. By
assuming deterministic domestic interest rate, it will be equivalent to P,[X; > K] under risk neutral
measure. Since the drift adjustment due to change of numeraire is

dw, = dwN + oydt
UnderFQ Undei N N (59)

where N denotes the measure associated with numeraire N and Q the risk neutral measure. The FX spot
process under the measure associated with the foreign money market account (basically, it is itself times
the non-random M,) as the numeraire is given by

dX, _
th = (r — )dt + cdW, = (r — # + o2)dt + cd W (60)
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The total drift adjustment o7 for period T = T — t is then normalized by the total volatility o/t of the
exchange rate process X, to give a shift term o+/7 as the difference between d. and d_ in the classic
Black-Scholes formula.
2.3.  Foreign-Domestic Symmetry

On top of the well-known put-call parity in options, there exists a foreign-domestic symmetry in

currency options, shown as below

1 _ . ) 11 .
ra OptionValue(w, X, K, o,r,7,7) = K - OptionValue (_w’f’f’ o, 7,7, T) (61)

For example, a call on X is equivalent to a put on X = 1/X. Alternatively speaking, a right to buy one
FOR at a price of K DOM is equivalent to the right to sell K DOM at a price of one FOR. In Black-Scholes

model, the symmetry can be derived as follows, e.g., the value of a call on X is

1 F oVt
= — = log— + — —d, — (62)
V="Pr(FP(d,)—KP(d)), dy - \Elog Z T d_=d, —oVt

and the value of a put on X is

g o _ Fo(d,) —K®(d.) V
V=P (Fo(=dy) = RD(=d.)) = Py ——"—7 = o

~ (63)
A 1 F oVt o o
d, =——=log=+——=-d_, d_ =d+—0\/?=—d+
oVT K 2

2.4.  Market Quoting Convention

The option price quoting convention varies for currencies [10] [11]. Options can be quoted in one
of the four relative quote styles: domestic per foreign (fd), percentage foreign (%f), percentage domestic
(%d) and foreign per domestic (df). The call and put prices we showed in defined in (55) are actually
expressed in domestic per foreign style (also known as the domestic pips price), denoted by V¢,. With the

notional amount N expressed in foreign currency, we have Vr; = NP8B(w, K, o, 7). The other price quote

styles have the following relationships with respect to V4
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Vea

[‘fd Lfd
X (64)

Vorg = ——, =212
hd T g o = XK

V%f =

It is very important to note that this technique of constructing all these different quote styles only
works where there are two notionals given by strike K = N/N, in foreign and domestic currencies, and
there is a fixed relationship between them, which is known from the start. This is true for European and
American style vanilla options, even in the presence of barriers and accrual features, but is most definitely
not true for digital options. Suppose one has a cash-or-nothing digital which pays one USD if the EURUSD
FX rate fixes at time T above a particular level (sometimes called ‘strike’, which actually leads to the
confusion). The digital clearly has a USD notional (= $1, the domestic notional) so we can obtain
percentage domestic (%USD) and foreign per domestic (EUR/USD) prices. However, there is no EUR
notional (the foreign notional) at all so the other two quote styles are meaningless [12].

2.5.  Risk Sensitivities

Risk sensitivity of an option is the sensitivity of the price to a change in underlying state variables
or model parameters. We will present some basic types of risk sensitivities in the context of Black-Scholes
model.

2.5.1. Delta

Delta is the ratio of change in option value to the change in spot or forward. There are several
definitions of delta, such as spot/forward delta, pips/percentage delta, etc. Since FX volatility smiles are
commonly quoted as a function of delta rather than as a function of strike, it is important to use a delta
definition consistent with the market convention for the currency.

25.1.1. Pips Spot Delta

The pips spot delta is defined in Black-Scholes model as the first derivative of the present value
with respect to the spot, both in domestic per foreign terms, corresponding to risk exposures in FOR. This
style of delta implies that the premium currency is DOM and notional currency is FOR. It is commonly

adopted by currency pairs with USD as DOM (or currency?2), e.g., EURUSD, GBPUSD and AUDUSD,
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etc. By assuming N = 1 in FOR and hence V;; = PB(w, K, 0,7), the pips spot delta is equivalent to the
standard Black-Scholes delta

v, ad, ad._
A= a_afcd = wPd(wd,) + WPXP(d)w— %~ WPKp(d)w—r = wPd(wd,) (65)

where we have used the following identities

2
0(d,) _ d3 > L) - p(d) = 0 d(d)

aq, - weld) = ﬁeXp< 2 ad_

od, dd_ 1
X X  Xovt

(66)
d(—x) =1-—d(x),

with ¢ the standard normal probability density function. To understand pips spot delta, assuming DOM
is the numeraire, if one wants to hedge a short call of N notional in FOR with a premium of NV, in DOM,

one must be long NA amount of the spot X'. This can be achieved by entering a long position of NA units
of FOR with a cost of NAX units of DOM.
2.5.1.2. Percentage Spot Delta

The percentage spot delta (also known as premium adjusted pips spot delta) is defined as a
derivative of the present value with respect to the spot, both in percentage foreign terms, corresponding
to risk exposures in DOM. This style of delta implies that the premium currency and notional currency
both are FOR. It is used by currency pairs like USDJPY, EURGBP, etc. In Black-Scholes model, the

percentage spot delta has the form

A =6V%f=xi<vfd) Wra  Via
T oxX ax\x ax X

X

~K
Ax V%f = (l)P q)((l)d ) (67)

which shows that the percentage spot delta is the pips spot delta premium-adjusted by percentage foreign
option value. This can be explained by assuming FOR is the numeraire. If one wants to hedge a short call

of N notional in FOR with a premium of NV, /X in FOR, the delta sensitivity with respect to the spot

inverse X = 1/X must be
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Vd 1 Vfd
0L Vg — k50X

X X —E =V, xa (68)
x  Tx

To hedge the delta risk, one must be long N(Vfd — XA) amount of the spot inverse 1/X. This can be
achieved by entering a long position in N (V4 — XA) units of DOM with a cost of N(V;4/X — A) units
of FOR. Or equivalently, one enters a long position in N(A - Vfd/x) units of FOR with a cost of
N (XA - Vfd) units of DOM, which translates exactly into the percentage spot delta Ay, = A — Vo, .
Whether pips or percentage delta is quoted in markets depends on which currency in the currency
pair FORDOM is the premium currency, and the definition of premium currency itself is a market
convention. If the premium currency is DOM, then no premium adjustment is applied and the pips delta
is used, whereas if the premium currency is FOR then the percentage delta is used. Despite the fact that
market convention involves different delta quotation styles, they are mutually equivalent to one another
(referring to [13] for more details). The difference between pips delta and percentage delta comes naturally
from the change of measure between domestic and foreign risk-neutral measures. Consider the case of a
call option on FORDOM, or to be more thorough, a FOR call/DOM put. If the two counterparties to such
a trade are FOR based and DOM based respectively, then they will agree on the price. However, the price
will be expressed and actually exchanged in one of two currencies: FOR or DOM. From a domestic
investor’s point of view, if the premium currency is DOM, the premium itself is riskless and the hedging
of the option can be done by simply taking A amount of FORDOM spot. If however the premium currency
is FOR, there will be two sources of currency risk: 1) the change in intrinsic option value due to the move
in underlying spot. 2) the change in premium value converted from FOR to DOM due to the move in FX
rate. Apparently to hedge the two risks, one must take A and —Vy,/X; amount of spot position
respectively. Alternatively speaking, the premium adjustment comes from the fact that a premium in FOR
would have already hedged part of the option’s delta risk [14], which must be accounted in calculating the

delta.
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2.5.1.3. Pips Forward Delta
The pips forward delta is the ratio of the change in forward value (in contrast to present value!) of

the option to the change in the relevant FX forward, both in domestic per foreign terms

_ aVF;fd _

e wP(wd,) = (69)

| B>

by the following facts

Veya =L = wFd(wd,) - okd(wd.), =24 1 70
F;fd_P_w w‘l‘ w wa_), aF_aF_FO'\/? ()

2.5.1.4. Percentage Forward Delta
The percentage forward delta is defined as the ratio of the change in forward value of the option

to the change in the FX forward, both in percentage foreign terms

A _ aVF;%f _ Fi<VF;fd> _ aVF;fd _ VF;fd _
FET T 9F OF\ F oF F

F

K
AF — VF;%f = (L)Fq)((l)d_) (71)

Again, the percentage forward delta is the pips forward delta premium-adjusted by forward percentage
foreign option value.

The choice between spot delta and forward delta depends on the currency pair as well as the option
maturity. Spot delta is mainly used for tenors less than or equal to 1Y and for the currency pair with both
currencies from the more developed economies. Otherwise, the use of forward delta dominates. It is
obvious that the spot delta and forward delta differ only by a foreign discount factor 2, ;.. Since the credit
crunch of 2008 and the associated low levels of liquidity in short-term interest rate products, it became
unfeasible for banks to agree on spot deltas (which include discount factors) and, as a result, market
practice has largely shifted to using forward deltas exclusively in the construction of the FX smile, which
do not include any discounting [15].
2.5.1.5. Strike from Delta Conversion

It is straightforward to compute strikes from pips deltas. However, since explicit strike expressions

in percentage deltas are not available, we must solve for the strikes numerically. It can be seen that the
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percentage deltas are monotonic in strike on put side, but this is not the case on call side. Using percentage
forward delta as an example, the expression of a call delta is

K 1 F oVt
Ayp = =P —=log————

(72)
Ao = KCD 11 F oVt
%F — F O'\/—()gK

Obviously, the delta has two sources of dependence on strike and the function is not always monotonic.
This may result in two different solutions of strike. To avoid the undesired solution, the numerical search
can be performed within a range (Ky,in, Kmax) that encloses the proper strike solution. We can choose the
strike by pips delta as the upper bound K,,,, (because a pips delta maps to a strike that is always larger
than that of a percentage delta) and the lower bound K,,,;,, can be found numerically as a solution to the
equation below (where K,,;,, maximizes the Ay,z) [16]

gy D(d)

K - F Fm/?qb(d_) =0= ®(d_)ovt = ¢(d) (73)
However, the function below
fK) = ®(d_)oVT — ¢p(d-) (74)

. . . .. 1
is also not monotonic. It has a maximum o+ when K — 0 and a minimum when K = F exp (5 azr),

which can be used to find the K,,,;,,. The table below summarizes the delta and strike conversion of the 4
delta conventions.

Table 1. Deltas and delta neutral straddle strikes

Delta Convention |Delta from Strike Strike from Delta
) R o%T Wb
pips spot A(K) = wPd(wd,) K(6|A) = Fexp -5 = wo\Td! ( 5 )
- O-ZT p—
pips forward Ar(K) = w®(wd,) K(8|Ar) = Fexp — - woVTP 1 (wd)
K
percentage spot Ay, (K) = wPFCD(wd_) K(8|Ay,) € (Kmin, K(814)) for o =1
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percentage forward | Ay, (K) = a)gd)(a)d_) K(8|Ayr) € (Kmin, K(814F)) for w =1

2.5.2. Other Risk Sensitivities

In the following context, we will only express the risk sensitivities in domestic per foreign terms
for simplicity. Assuming the present value or the undiscounted of an option is given in the Black-Scholes
model, e.g., Vrq = PB(w, K, 0,7) or V.rq = B(w, K, 0,7), in domestic currency, the risk sensitivities
can be derived as follows.
2.5.2.1. Theta

Theta 6 is the first derivative of the option price with respect to the initial time ¢t. Converting from

t to t, we have 8 = dV /0t = —dV /dt. Let’s first derive the partial derivatives

U, o 1 Xt
a((£+2 —_log 5t
ad, <(0+2)ﬁ+a\/?°gl(> b, o 1 X
= = —_— 0 [—
ot 0t 20V 4T 2013 % (75)
ad_ d(dy —ovT) 1 o 1 X
= = — —_— O —
dt ot 20Vt 4T 20V73 e

The theta can then be derived as

av A . ad, ad_
0 =— = wfPX®P(wd,) — PX¢p(d,) — — wrPK®(wd_) + PK¢p(d_) —
at ot Jt
(76)
— wPPXD(wd,) — wrPKD(wd_) — PXp(d,) ——
2Vt

where we have used the identity PX¢(d,) = PK¢(d_) = Fp(d,) = K¢(d_).
25.2.2. Gamma

Spot (forward) Gamma I" is the first derivative of the spot (forward) delta A with respect to the
underlying spot X (forward F; 1), or equivalently the second derivative of the present (undiscounted)

value of the option with respect to the spot (forward)
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_ 0%V oA P¢(d,)

0’V 0Ar _ ¢(dy)
=—=—") FF = = = (77)
X2 odx Xo'\/; d0F? d0F Fo'\/?
The call and the put option with an equal strike have the same gamma sensitivity
2.5.2.3.

Vega

Vega V is the first derivative of the option price with respect to the volatility o, that is
ov

V= () 2~ pre(d) 2% = Parg(a,) 0 = P, VT
~ 90 &( +)%_ é( —)%— $(d,) = d(d VT
= PKp(d_W7
(78)
Vi ad, od_ d, —d_
P =5 = 5= (FO(d,) — Ko(d)) = F(d,) ——— Kp(d-) 5— = Kp(d_)
= F$(d VT = Kp(d VT
where we have used the following equations
oVt
6d+_a<a\/_ +2>_ 1 F Vi ooody ek
do do T g2 TogE+7——— i (79)
od_ _d(d, —ovr) 0d,

d,
do do B 60_\/?__?

The call and the put option with an equal strike have the same vega sensitivity

25.2.4. Vanna

Vanna is the cross derivative of the present (undiscounted) option value with respect to the spot
(forward) and the volatility o. The Vanna can be derived as

0%V 9A . ad Po(d,)d_ Vd_
0Xdo do do o Xovt
2%V oV vd
- — _ — 80
0Xdo 90X PKe(d- )\/_d_ BX XU\/? (%0
0%Vy _0Ap od(d,) 3 ¢(d,)d_
dFdc OoF  do

o
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2;?; - ?;F = —Ked- Wed St aF ~Vrd- aacj; - ng/_; - _@
using the facts
ad, ad_ 1 ad, ad_ 1
9X  0X Xovi OF OF Fovt (81)
The call and the put option with the same strike have the same vanna sensitivity.
2.5.2.5. Volga
Volga is the second derivative of the option price with respect to the volatility o
R A LI SR R L
(82)
O g T = F¢>(d+)d+\/?i—‘ - el
using the fact that
ot _°mee (-%))
ddy) " \\2m 2 (83)

ad+ - ad+ = _¢(d+)d+

The call and the put option with an equal strike have the same volga sensitivity.
2.6. FXVolatility Smile Convention

In liquid FX markets, Straddle, Risk Reversal and Butterfly are some of the most traded option
strategies. It is convention that the markets usually quote volatilities instead of the direct prices of these
instruments, and typically express these volatilities as functions of delta, e.g., § = 0.25 or 0.1, which are
commonly referred to as the 25-Delta or the 10-Delta. Let’s define a general form of delta function
A(w, K, o), whick can be any of the pips spot A, pips forward Ap, percentage spot Ao, or percentage
forward Ag,z. The § in Black-Scholes model can be computed by the delta function A(w, K, o) from a
strike K and a volatility o. Providing a market consistent volatility smile ¢ (K) at a maturity, there is a 1-
to-1 mapping from § to K such that § = A(w, K, 6(K)).

2.6.1. At-The-Money Volatility
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FX markets quote the at-the-money volatility o,;,, against a conventionally defined at-the-money
strike K,:,. There are mainly two types of at-the-money definitions: ATM forward (ATMFWD) and
ATM delta-neutral straddle (ATMDNS). A market consistent volatility smile a(K) must admit the fact
that 0 (Kem) = Ogem-
2.6.1.1. ATM Forward
In this definition, the at-the-money strike is set to the FX forward F; 1
Kotm = Fer (84)
This convention is used for currency pairs including a Latin American emerging market currency, e.g.,
MXN, BRL, etc. It may also apply to options with maturities longer than 10Y.
2.6.1.2. Delta Neutral Straddle
A delta-neutral straddle (DNS) is a straddle with zero combined call and put delta, such as
AL, Kyimy Oqem) + A(—1, Kgtm» Oarm) = 0 (85)
If the A(w, K, 0) is in the form of pips spot delta (65) or pips forward delta (69), the ATM strike K¢,

corresponding to the ATM volatility a,.,, can be derived as
1
D(d,) — D(=d,) = 0 = B(d,) = 0.5 = Koo = F exp (E agtmr> (86)

Alternatively, if the A(K, o, w) takes the form of percentage spot delta (67) or percentage forward delta
(71), the ATM strike K., can be derived as
1
D(d_) — D(—d_) = 0 = b(d_) = 0.5 = K,pr, = F exp (—Eajtmr) (87)

The table below summarizes the ATMFWD and ATMDNS strikes with associated delta definitions

Table 2. Deltas and delta neutral straddle strikes

Delta Convention |Delta Formula | ATMFWD Delta ATMDNS Strike | ATMDNS Delta
_ . 02T 1
pips spot wP®(wd,) |wPP (w U‘mznﬁ> F exp < atzm ) 3 wP
02 T 1
pips forward wd(wdy)  |wd (a) %znﬂ F exp< = ) Sw
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K . o, T 02mt\|1 . 02T
percentage spot | wP — d(wd-) |wP® (_w atrzn\/—> Fexp <_ atzm > LoPexp <_ atzm )

K 02T\ |1 02T
percentage forward wFCD(wd_) w®d (—a) Uanzn\/?> F exp <— atzm > @ exp <— a;m )

It is evident that if the ATM strike is greater (smaller) than the forward, the market convention must be
that deltas for that currency pair are quoted as pips (percentage) deltas [17].

2.6.2. Risk Reversal Volatility

FX markets quote the risk reversal volatility o5z as a difference between the §-delta call and put
volatilities. Providing a market consistent volatility smile o(K), it is given by
osrr = 0(Ksc) — 0(Ksp) (88)
where §-delta smile strikes K. and Ksp can be inverted from the delta function such that
A(1,Ksc,0(Ksc)) =8,  A(—=1,Ksp,0(Ksp)) = =8 (89)

2.6.3. Strangle Volatility

There are two types of strangle volatilities.
2.6.3.1. Market Strangle
Market strangle (MS, also known as brokers fly) is quoted as a single volatility os,,s for a delta é.
The §-delta market strangle strikes K5 sc and K5 sp for the call and put are both calculated in Black-
Scholes model with a single constant volatility of o,:,, + dsus, Such that at these strikes the call and put
have deltas of +6 respectively
A(1, Kussc) Oatm + Osus) = 6, A(=1, Kus,5p) Oatm + Osms) = =6 (90)
This gives the value of the market strangle in Black-Sholes model as
Vsms = 23(1; Kussc) Oatm + Osus, T) + %(—1' Kus,sp) Oatm + Osms) T) (91)
This value must be satisfied by a market consistent volatility smile o(K), such that the V,, defined below

must be equal to the Vg,
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V5,MS = 58(1; Kus sc U(KMS,SC)» T) + SB(— 1, Kys sp, O'(KMS,(S‘P)' T) (92)

Note that, at these strikes we generally have

A (1» Kus,sc U(KMS,6C)) # 0, A (—1» Kus,sp» U(KMS,SP)) #* —0 (93)
Providing a calibrated volatility smile o(K) consistent with the market, it is easy to derive the
market strangle volatility from the smile. The procedure takes the following steps
1. Choose an initial guess for asys (€.9., let osys = Tsss)
2. Compute the market strangle strikes Kys sc and K5 sp by inverting (90) given the &
3. Compute the strangle value Vsys in (91) and the Vg, in (92)
4. If Vg, is close to Vs, s then the Vg, is found, otherwise go to step 1 to repeat the iteration
2.6.3.2. Smile Strangle
Providing a market consistent volatility smile o(K) is available, it is more intuitive to express the

strangle volatility os¢s as

305 = L0 - 7)o Koo (94)

This is called smile strangle volatility, where the smile strikes K5 and Kp are given by (89).
Given the market quoted g, , 0srr and gsys, One can build a volatility smile o(K) that is
consistent with the market. The procedure takes the following steps
1) Preparation:
e Determine the delta convention (e.g., pips or percentage, spot or forward)
e Determine the at-the-money convention (e.g., ATMFWD or ATMDNS) and its associated ATM
strike K, tm
e Choose a parametric form for the volatility smile o(K) (e.g., Polynomial-in-Delta interpolation)
o Determine the market strangle strikes K5 sc and Kys sp by (90) using o441, + 0sys

e Compute the value of market strangle Vg in (91)
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2)

3)

4)

5)

2.6.4.

Choose an initial guess for 55 (€.9., 0555 = Tsus)
Use 04tm, Osgr aNd agsgs to find the best fit of o (K) such that with the smile strikes Ks. and Ksp
given by (89), we have

0(Katm) = Oatm

o(Ksc) — a(Ksp) = Osrr (95)

o(Ksc) + o(Ksp)
2

— 0(Kqem) = 0sss
Compute the value of the market strangle Vs in (92) with the market strangle strikes Ky sc and
Kus sp using the o (K) fitted in step 3).
If Vs is close to the true market strangle Vs, then the o(K) is found, otherwise go to step 2) to

repeat the iteration.

Smile Volatility

From the relationship in (95), we can easily find the implied volatilities corresponding to §-delta

smile strikes Ksc and Ksp

0(Ksp) = Ogtm + 0555 — > 0(Ksc) = Ogtm + 0555 +

OSRR
2

OSRR

(96)

where the §-delta smile strikes K- and Ksp can be solved from (89).
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3. VOLATILITY SURFACE CONSTRUCTION

Table 3 presents an example of ATM, risk reversal and smile strangle volatilities at a series of

maturities. Each maturity may associate with different ATM and delta conventions. In previous section,

we have shown how to extract the five volatilities, at +10D +25D and ATM respectively, from market

quotes for each maturity subject to its associated market convention. It is often desired to have a volatility

surface, so that an implied volatility at arbitrary delta/strike and maturity can be interpolated from the

surface.

Table 3. ATM, risk reversal and smile strangle volatilities with associated conventions

Maturity ATM Convention Delta Convention ST10D ST25D ATM RR25D RR10D
1M ATMDNS Spot Percentage 0.73% 0.28% 9.13% -1.13% -2.09%
3M ATMDNS Spot Percentage 1.01% 0.36% 9.59% -143% -2.72%
6M ATMDNS Spot Percentage 1.33% 0.44% 10.00% -1.66% -3.15%
1Y ATMDNS Spot Percentage 1.67% 0.51% 10.39% -1.88% -3.66%
3Y ATMDNS Forward Percentage 2.34% 0.68% 10.58% -1.90% -3.59%
5Y ATMDNS Forward Percentage 2.65% 0.74% 10.86% -2.00% -3.64%
Y ATMDNS Forward Percentage 2.80% 0.73% 11.36% -2.20% -3.85%
10Y ATMDNS Forward Percentage 2.75% 0.57% 12.43% -2.63% -4.60%
12Y ATMFWD Forward Percentage 2.23% 0.64% 12.73% -2.78% -4.44%
15Y ATMFWD Forward Percentage 2.16% 0.62% 13.03% -3.13% -5.07%
20Y ATMFWD Forward Percentage 2.13% 0.63% 13.03% -3.18% -5.08%

3.1.  Smile Interpolation

There are many ways to perform a smile interpolation, specifically to interpolate a 5-point

volatility smile. We are going to introduce a few practical interpolation methods as follows.

3.1.1. Polynomial-in-Delta

Polynomial-in-Delta is one of the simple and widely used methods. It employs a 4™ order

polynomial which allows a perfect fit to five volatilities of a smile (or a 2" order polynomial if just fitting

to three volatilities. such 3-point fit has been introduced in [18]). The parameterization is as follows

logo(K) = z ajx(K)/,

4

j=0

x(K) =M(K)—-M(Z)

36

(97)



where a;’s are the coefficients to be calibrated (exactly) to the market volatilities. The function M(-)

provides a measure of moneyness that often takes the form

1 K
M(K) = ® (u_ﬁ log K) (98)

where A can be the forward F or the at-the-money strike K,;,,. Polynomial-in-Delta interpolation is
named after the fact that the measure of moneyness (98) is similar to the definition of forward delta (69).
The parameter Z in (97) can be chosen to be the F or the K,;,, such that the x(K) provides a measure of
distance in moneyness from the Z. The parameter v in (98) is a normalizing volatility to be determined
later.

Calibration of the coefficients a;’s is straightforward. From previous discussion, we are able to
retrieve 5 volatility-strike pairs (o, K;) for i = 1,---,5 at a given maturity from market quotes, i.e.,
volatilities at strikes corresponding to +10D, +25D and ATM subject to prevailing delta and ATM
conventions. Based on the 5 volatilities, we are able to form a full rank linear system from (97), which
can then be solved for the coefficients a;’s.

The parameter v in (98) need be determined. For simplicity, we may take v = g,4,,. TO be more
adaptive, one may choose v = ¢(K). This has no impact to the calibration. But we must then solve (97)
iteratively to interpolate the volatility o (K). Using adaptive a(K) for v is usually desired for improving
wing behavior of the smile, though computationally inefficient. To mitigate this issue, we may proceed
with a prediction-correction scheme. In this scheme, we calibrate the model twice, one with v = 6.,
which gives calibrated coefficients @;’s, and the other one with v = o(K) which gives calibrated
coefficients a;’s. To find the interpolated volatility, we first use @;’s along with v = g, to Obtain a
prediction 6(K). This quantity should be a good approximation of the true value of o(K). We then use
coefficients a;’s along with v = 6(K) to derive a further improved approximation of o(K). Numerical
experiments confirm that the values derived from the prediction-correction scheme are in an excellent

agreement with those computed from iterative solver.
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3.1.2. Stochastic Volatility Inspired (SVI)

Stochastic Volatility Inspired (SVI) parameterization was introduced by Gatheral in 2004 [19]
[20]. The idea is to build a smooth parameterization of the smile which guarantees a wing behavior, such
that, the implied variance w is always linear in k, e.g., w(k) « k for k - +oo, where w is the square of
implied volatility and k = log K is the log-strike. Such wing behavior, which is consistent with stochastic
volatility assumption, is backed by theoretical arguments that can be found in Lee [21]. The raw SVI

parameterization reads

vis(k) = w(k;a,b,p,m,0) =a+b (p(k —m) ++/(k—m)? + 02) (99)
When ¢ = 0, we can obtain the left and right asymptotes
wy(k;a,b,p,m,0) =a—b(1l—p)(k—m)
(100)
wg(k;a,b,p,m,0) =a+ b(1+p)(k—m)
It follows immediately that changes in the parameters have the following effects

e qa givesthe overall level of variance. Increasing a increases the overall level of variance, a vertical
translation of the smile. The overall level must be somewhat bounded by the largest observed total
variance, hence we have a < max{w;}

e b gives the angle between the left and right asymptotes. Increasing b increases the slopes of both
the put and call wings, tightening the smile. Since volatility smiles usually have positive ATM
curvature, it indicates b > 0. A necessary condition for the absence of dynamic arbitrage, gives an
upper bound, b < 4/(1 + |pl|)

e p determines the orientation of the graph. Increasing p decreases (increases) the slope of the left
(right) wing, a counter-clockwise rotation of the smile. since p is basically a factor that explains
the correlation between the spot and the volatility process, we need to have -1 <p <1

e m translates the graph. Increasing m translates the smile to the right. Since m is a quantity

associated with k, we may define the range min{k;} < m < max{k;}
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e ¢ determines how smooth the vertex is. Increasing o reduces the at-the-money (ATM) curvature
of the smile. In general, o > 0 as it is an empirical fact that volatility smiles have a positive at-the-
money curvature. No upper bound can be derived for a, but a small integer always does the job,
for example 0 < 10
We want to calibrate the model (99) to market quoted 5 variance/log-strike pairs (w;, k;) fori =

1,---,5 at a given maturity, i.e., implied variance at log strikes corresponding to +10D, +25D and ATM
subject to proper delta and ATM conventions. This is a 5-dimensional nonlinear root finding problem that
finds parameters {a, b, p, m, g} such that

vis(k;)) =w(k;;a,b,p,mo) for i=1,-,5 (101)

Or equivalently, we may find an optimal set of parameters {a, b, p, m, o} such that the objective function

5
f(a,b,p,m,0) = z(vés(ki) —w(k; a,b,p,m, 0))2 (102)

is minimized, which is basically a nonlinear least square problem. However, calibration of this model can
be difficult numerically [22] [23] [24] because of the high dimensionality of the problem (5 parameters)
and also because the parameters are not completely “orthogonal” (e.g., varying m and p both change the
skewness; varying b and o both change the convexity). As such, the objective function (102) usually has
multiple local minima which renders gradient methods unreliable.

3.1.2.1. Uni-SVI

In order to calibrate the model efficiently, we transform the raw SVI model (99) equivalently to

w(k;a,B,my,0) =a+Bk—m)+y (\/(k —m)? + 02— a) (103)
by employing the change of variables p = /vy, b =y and a = a — yo. We call this model Uni-SVI. In
this form of SVI model

e « gives the overall level of volatility smile

e [3 determines the skewness of volatility smile
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e m translates the volatility smile

e y controls the convexity of volatility smile

e ¢ determines smoothness of the vertex around k = m
We want to calibrate the model to the 5 variance/log-strike pairs {(w;, k;)| i = 10p, 25p, atm, 25c,
10c} corresponding to the 5 different delta values. For a fast and reliable calibration, a good initial guess
must be provided. In the model, we first suggest an intuitive initial guess for parameter m with m = kg,

and for o with & = (kas. — kasp)/2. This gives the equation

wk) = a + f(k —m) +y (Vk —m)? + 62 - 6) (104)
When k = k., itis easy to see that @ = w,,. Since |k10p — katm| and |k,o. — kqem| are usually more
than twice as large as &, when k = k,,,, we may take an approximation and write

k=kip = Wiop =@+ B(kIOp - 1?1) - ?(kwp - 7?1) —7y6

5 Watm — Wiop o (105)
= f—Ty = =5,y =1-
katm klOp

Similarly, when k = k. We write

k =kioe = Wige = @+ Bkyge — M) + P(kioc — M) — 76

A (106)
5 o~ Wioc — Watm o
= ptppe= =8, o=l
‘ klOc - katm ¢ ‘ klOc - katm
Combining (105) and (106), we end up with the following initial guess for the parameters
~ 5 ~ ~ 6. — 6 . ~ kzs - k25
a = Watm, B = 8p + y¢p' Yy = (]5; n q;; ) m = Kaem, 0= % (107)

Numerical experiments show that this initial guess generally leads to a fast convergence of a nonlinear
solver even without imposing parameter bounds.

3.1.2.2. Bi-SVI

Available upon request ...
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3.1.2.3. Tri-SVI

Available upon request ...
3.2.  Temporal Interpolation

The most commonly used temporal interpolation assumes a flat forward volatility in time. This is
equivalent to a linear interpolation in total variance. For example, if we have o, (p) and g4, (q) at
maturities p and g respectively, subject to the same ATM and delta convention, we may interpolate an

ATM volatility at a time t for p < t < q by the formula

q—t t—p
0Zem (Ot = Hafcm(p)zﬂ + ozem(@)q (108)

The temporal interpolation in £10D and +25D volatilities are in the same manner.
3.3.  Volatility Surface by Standard Conventions

Table 2 shows that the market convention on ATM and delta style may vary from one maturity to
another. Such jumps in conventions introduce inconsistency in definition of the ATM strikes and §-deltas
across maturities. It will be much convenient to assume a unified standard convention for marking ATM
strike and &-deltas strikes at all maturities [25]. A pragmatic choice is to use delta-neutral-straddle ATM
and forward pips delta as the standard convention. For each maturity t, we convert the 5-point volatility-
strike pairs (o;, K;) associated with a specific market convention to (cﬂ-ﬁi) such that the new 5-point
(6, K;) pairs conform to the standard ATM and delta convention. This conversion involves first building
a smile using the 5-point (o;, K;) pairs with the market convention, and then finding from the smile the 5-
point (61-,Ri) pairs with the standard convention, for i = 10p, 25p, atm, 25¢, 10c.

To find a smile at an interim time u for p < u < q between two adjacent maturities p and q, the
temporal interpolation is performed on the volatilities with standard convention. For example, we get a
25c volatility 655, (u) at the interim time u by interpolating from &,<.(p) and 6,<.(q). We obtain all the
5-point volatilities &;(u), along with their associated strikes K;(u) (which are inverted from the §-delta

values given the standard ATM and delta convention). The last step is then to use the 5-point volatility-
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strike pairs (6i (w), K-(u)) to build a volatility smile, again with standard ATM and delta convention, for

strike interpolation at time .
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4. THE VANNA-VOLGA METHOD

The vanna-volga method is a technique for pricing first-generation FX exotic products (e.g.,
barriers, digitals and touches, etc.). The main idea of vanna-volga method is to adjust the Black-Scholes
theoretical value (TV) of an option by adding the smile cost of a portfolio that hedges three main risks
associated to the volatility of the option: the vega, vanna and volga.
4.1.  Vanna-Volga Pricing

Suppose there exists a portfolio H with a long position in an exotic trade Y, a short position in A
amount of the underlying spot X', and short positions in w, amount of instrument A;, w, amount of
instrument A, and w; amount of instrument A;. The hedging instruments A;’s can be the straddle, risk
reversal and butterfly, as they are liquidly traded in FX markets and they carry mainly vega, vanna and
volga risks respectively that can be used to hedge the volatility risks of the trade Y. By construction, the
price of the portfolio and its dynamics must follow

H=Y—AX—ZwiAi, dedY—AdX—ZwidAi (109)
i=1 i=1

We may estimate the Greeks in Black-Scholes model and further express the price dynamics in terms of

the stochastic spot X and flat volatility o. By Ito’s lemma, we have

_ (¥ 23: AN e + A- Z
“\ot . 1wi ot @i
l=

Theta Delta
(axz Z Yigx > dxax (110)
Gamma
+<a—y—ia)-%)da+1<62—Y—ia)-@>dada+(az—y—i 0%, >dXda
do & ' do 2\ do? L ' 002 0Xdo & METEr
Vega Volga Vanna

43



Choosing the A and the weights w; so as to zero out the coefficients of dX, do, dodo and dXdao, the
portfolio is then locally risk free at time t (given that the gamma and other higher order risks can be
ignored) and must have a return at risk free rate. Therefore, when the flat volatility is stochastic and the
options are valued in Black-Scholes model, we can still have a locally perfect hedge. The perfect hedge

in the three volatility risks implies that the following linear system must be satisfied

vega(Y) vega(A,) vega(4,) vega(4s) W,
vanna(Y) | = | vanna(4,;) vanna(4,) vanna(A4;) (0)2) (111)
volga(Y) volga(4,) volga(4,) volga(4;) / \@3

This perfect hedging is under an assumption of flat volatility. Due to non-flat nature of the volatility
surface, additional cost between A; (osmile) and A;(og,:) Must be accounted into the price of the trade Y
to fulfil the hedging. As a result, the vanna-volga price Yy, of the trade Y is computed as follows

3
YVV(Gsmile) = YTV(Gﬂat) + Z wi(Ai(Usmile) - Ai(aﬂat)) (112)

=1

where Y, (opat) IS the theoretical Black-Scholes value using a flat volatility (e.g., dgac = Gaem )
A;(osmile) and A;(op,.) are the prices of the hedging instrument valued with a volatility smile and a flat
volatility respectively.
4.2.  Smile Interpolation

The vanna-volga method may also serve a purpose of interpolating a volatility smile based on the
market quoted at-the-money volatility o,;,,, the §-delta risk reversal volatility sz, and lastly the §-delta
smile strangle volatility gs5s¢ (converted from market strangle volatility a5, by the method in section

2.6.3.2). From the relationship in (95), we can derive the following quantities

Strikes Implied Volatilities
OSRR
K, = Ksp |01 = 0(Ksp) = Ogem + 0555 — -
K; = Kgim |02 = U(Katm) = Ogtm
OSRR

K3 = Ks¢ |03 = 0(Ksc) = Ogtm + 0555 + 5
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where the ATM strike K,;,,, 1S given by the at-the-money convention, and the §-delta smile strikes K.
and Ksp are solved from (89).

We will follow a similar analysis in section 4.1. Suppose we have a perfect hedged portfolio P that
consists of a long position in a call option Y with an arbitrary strike K, a short position in A amount of
spot X', and three short positions in w; amount of call options A; with strikes K; = Ksp, K, = K¢y and

K3 = Kg¢. The perfect hedge in the three volatility risks admits that the following linear system must be

satisfied
vega(Y) vega(4;) vega(4,) vega(4s) W,
vanna(Y) | = | vanna(4;) vanna(4,) vanna(A4;3) <w2> (113)
volga(Y) volga(4;) volga(4,) volga(4z)/ \@W3

where these volatility sensitivities can be estimated in Black-Scholes model assuming a flat volatility flat
volatility o (usually we choose o = o0,;,,). Plugging the closed form Black-Scholes vega, vanna and volga
in (78) (80) and (82) respectively, the (113) becomes
1 V(K1) V(K3) V(K3) w1
V(K) (d+d_(1()) =|vd,d_(K,) vd,d_(K,) Vd,d_(K3) (0)2) (114)
d_(K) Vd_(Ky)  Vd_(K,) Vd_(K;) | \w3
where d,.d_(K) is short for d . (K)d_(K) and Vd.,.d_(K) for V(K)d, (K)d_(K). By inverting the linear

system, there is a unique solution of w for the strike K, such that

Ky, K K K3 K. K
_ V(K) log 7#log 7 _V(K) l02‘3}(—110{;7 V(K) logElogK—2

) wZ

Wy (115)

)

= = w3 =
V(Kl)log%log% v(KZ)log%log% v(K3)log%log%
1 1 1 2 1 2

A “smile-consistent” volatility v (i.e., a Black Scholes volatility implied from the price by the
vanna-volga method) for the call with the strike K is then obtained by adding to the Black-Scholes price

the cost of implementing the above hedging at prevailing market prices, that is

3
CK,v) = C(K,0) + Z wi(C(K, 07) — C(Ky, o)) (116)
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where the function C (K, o) stands for the Black-Scholes call option price with strike K and flat volatility
o.

A market implied volatility curve can then be constructed by inverting (116), for each considered
K. Here we introduce an approximation approach. By taking the first order expansion of (116) in o, that

is we approximate C(K;, 0;) — C(K;, o) by (0; — 0)V(K;), we have

CK,v) ~ C(K,0) + Z w;(0; — V(K (117)

Substituting w; with the results in (115) and using the fact that V(K) = Y3, w;V(K;), we have
3 3
CCK,v) = C(K,0) + V(K) (Z yio; - a) ~CK )+ VI -0) =T~ ) yoi  (118)
i=1 i=1
where v is the first order approximation of the implied volatility v for strike K, and the coefficients y; are

given by

K, K;
log—2log =2 logK log K logK logK
yl—M, yz——, ys—— (119)
logK logK logK logK logK logK
This shows that the implied volatility v can be approximated by a linear combination of the three smile
volatilities o;.

A more accurate second order approximation, which is asymptotically constant at extreme strikes,

can be obtained by expanding the (116) at second order in o

C(K,v) ~ C(K,0) + V(K)(@ — o) + %VU(K)(E —o)?
3 (120)
~ C(K,0) + ) o, (V)0 — 0) +5 Ve (K (0, — 0)?)
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vd,d_(K)

= VK)v—-0)+
20

(¥ —0)?

3 3
V(K
~ V(K)Z%Ui - V(K)o + %Z yidd_(K;)(o; — 0)?
=1 =1

d.d_(K)
: .
20

i3=13’id+d—(Ki)(Ui - 0)2> ~0

(1=7—a)z+(1=7—a)—<17—a+
20

Solving the quadratic equation in (120) gives the second order approximation

-0+ \/02 + QoW —0)+ X3 yidyd_(K)(0o; — 0)?)d, d_(K)
d.d_(K)

(121)

=0+

<A

where d_ d_(K) is evaluated with a flat volatility o.
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5. CLAsSIC LOCAL VOLATILITY: DUPIRE

In local volatility models, the volatility process is assumed to be a function of time and FX (or
equity) spot level. It is one step generalization of the well-known Black-Scholes model. In the following,
we are going to introduce Dupire local volatility, which as mentioned in Section 1.3 can be regarded as
the conditional risk-neutral expectation of the instantaneous future variance (i.e., conditional mean of the
stochastic volatility). To show this, we may assume under risk neutral measure the FX spot process X;

follows a general SDE below

dx, .
T = ﬂtdt + O-tth, U =T — 1% (122)
t

with domestic short rate r; and foreign short rate 7, (or dividend rate for equity). Usually, we use a “hat”
accent to denote quantities in foreign economy. The volatility process o; is a general function of time. It
can be stochastic and may also be dependent on spot level X;. In the context of the Dupire local volatility
model, the volatility process is simplified to be a deterministic function of the spot X}, such that g, =
2(t, Xyp).
5.1. Local Volatility by Vanilla Call

The price of European (vanilla) call option at initial time s can be expressed as a function of

running maturity t and strike K
Ct,KIs,a = [Es[Ds,t(xt - K)+] = Ps,t[Eg[(xt - K)+] = Ps,tJ (X - K)pt,xls,adx (123)
K

where E&[-] denotes an expectation under t-forward measure. The value of domestic zero coupon bond is

given by

P, = Eg [exp <— jtrudu>l = exp <— ftfs‘udu> (124)

where f; , is the forward rate of r; (i.e., the deterministic interest rate). The p; s+, Which is under ¢-
forward measure, is the transition probability density having spot X; = x at t given initial condition X =

a at s. For brevity, we will use C,  for call price, short for C; k|5 o, and p¢ , Short for pe (s -
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Under assumption of deterministic r, and 7, we may write r, = f;, and 7, = fs,t. Differentiating
(123) with respect to K, we have the first order and second order partial derivatives

ac °°
N st fK Pexdx, W = FstPtx (125)

oK

The cumulative density function and the probability density function of the transition probability can then

be expressed as

K 1 0C.x 1 0%Crk
il 7. =— ’ 126
.f_ ptxdx 1 P t aK ) pt,K Ps’t aKZ ( )
The (126) is also known as Breeden-Litzenberger formula.
Taking partial derivative of C; x with respect to ¢, we find that
ac p
a;K = -—1Cri + Ps,tf (x - K)—=d
K
(127)
10%(€2,x%pr,)  0(uexp
=—rtC’t,(+PStj (x—K)( 0x > LA tax tx))dx
where we have used the Kolmogorov Forward Equation (11)
0pex _ 10%(£2xxPex) _ O(MexPex) (129)
ot 2 0x? dx
Applying integration by parts to the integrals on the right hand side of (127) yields
6 U xp o @
f (x — ( d tX) =(x— K)lltth,xlx:K _.Utf XPtxdx
K
=0 (129)

UK oCrx  uCr

=—,qu p,dx—uf (x — K)pgdx = — —
t < t,x t < t,x Ps't aK Pslt

and
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j (x — az(ftxx Pt x) dx = (x — K) a({’%,,;xzpt,x) B f°° a(fﬁxxzpt’x) i
x ek K 0x
=0 (130)
o ‘82 KZ aZCt K
= _fg,xxzpt,xlxﬂ( = i kK?pek = t'PI;t 01(2‘

where we have lim p,, = 0 and lim dp,,/dx = 0 assuming that the density function p, , and its first
X—00 X—00

derivative vanish at a higher order of rate as x — co. Plugging (129) and (130) into (127), we find that

0C, 2K 02C 4 9C,
ot 2 okz Mok

C#Cik (131)

and eventually we reach the classic Dupire formula for the local volatility £, x

0C i
ot
f%,K =

0Ck

1 Za Cox
2K 5k

(132)

2

The classic Dupire formula expressed in put options can be derived in the same manner. Alternatively,

one can quickly obtain its expression from (132) by put-call parity relation C; x = Py + Ps,t(Fs,t —-K )

aP aP X
3F TtPs,t(Fst K) + uPsFgr + UK ((’)K Ps,t) + 7 (? + Ps,t(Fs,t - K))
bt = 1. ., 02%P
2
2K k=
(133)
0P, 0P,
_ —a;'K + u K aIt(K + 7t Pek
1,,0%P
2K 5x2
where the FX forward is given as
p
Foe = Xs Pi't (134)
s,t

Numerical methods often demand a local volatility function constructed on a 2D grid, one
dimension for time and the other for spot (or strike). It is often numerically more stable to work with
spatial dimension in terms of log-strike or log-moneyness. For example, if we express the strike in log-

moneyness k, the change of variable will be
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K ok 1 ok

k = loga and K-K 5= He (135)
where the forward is given by
Fo,=X t e _
st = As €Xp pdu |, at peFse (136)
S

We want to express the classic Dupire formula in the (¢, k)-plane, using call C;j = C¢ |5, Which is
equivalent to the call C,x = C; s The transformation from (¢, K) to (¢, k) is achieved by using the

following partial derivatives derived by chain rule

0Cix 0C, 0Ci 0k 0C. — 0Cy,

ot ot ok ot ot Mok

0Crx 0Cpp 0t  0Crx Ok  10C.x

9K ~ ot 9K ok 9K K ok (137)
0°Cex 0 (66},,() ot N 0 (act_k) ok 10 (1 act_k> 1 (0%C, 0Ck

K2 — ot\ ok /oK 0k\ ok /oK Kok\K ok / K2\ ok? ok

Plugging these partial derivatives into (132), we have the classic Dupire formula expressed in k as
ac
{2 _ a_?k'l'f'tCt’k
tk ™ 1 azct’k act’k (138)
7( ok 0k )

5.2.  Local Volatility by Undiscounted Call
Given deterministic rates, it sometimes is more convenient to express the classic Dupire formula

in terms of an undiscounted call value C; x = C;k|s,q, that is

(o]

Ct,KIs,a = [Es[(xt - K)+] = j (x — K)pt,xls,adx = P
K s,t

Ct,Kls,a

(139)

with the discounted call C; k|5 ., defined in (123). We can derive the partial derivatives of the undiscounted
call, similar to those in (125) and (131)

0Cek
0K

%) aZCt,K
- f Pt x|s,adX Sz~ Pukisa (140)
K
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0Cek

K
+ u(Cex — K 9K

aCtK f (x — ptxlsad _1 azCt )

— _fz KZ
2 UK Kz
The transition probability cumulative density function has a simple expression as

0Ce i

K (141)

K
f Pexdx =1+

which allows us to estimate the cumulative density numerically using a call spread®. The Dupire formula

for £, k in the undiscounted call hence reads

acC acC
5 a;K + u K a;(K .utCt,I(
3“( 32 (142)
—K2 LK
2 0K?

Using log-moneyness k for the strike, we again want to derive the Dupire formula in (t, k) using
undiscounted call C; , which is equivalent to the undiscounted call C, . The transformation from (t, K)

to (t, k) is done through using the following partial derivatives given by chain rule

0C.x  9Cy  0Cu 0k 0C,  C
at ot ok ot ot Mok

0Cx  0Crp 0t 0Crp Ok 1 0Cy

9K _ ot 9K ' 0k 9K K ok (143)
0°Cx 0 <6Ct,k) ot N 0 ((’)Ct,k) ok 10 (1 6Ct,k) 1 (0%Cer 0Cy
0K2  odt\ ok /oK 0k\ ok /0K Kok\K ok / o0k? ok
Plugging these partial derivatives into (142), we have the Dupire formula as follows
0Cy
£? 7 — HeCreg
tk _ Ot (144)

2 T 9%C,,  0Cy
okz 0k

where £, is the local volatility in (t, k) equivalent to £, x.

5.3.  Local Volatility by Implied Volatility

! When the C, x is given as (undiscounted) Black-Scholes option value Cgg, we would have the cumulative density as

[P = 14+ ZE 4 0350 = 1 — @(d.) + K(d- W gr =1 - D(d-) + Fe(d VT o7
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Markets quote option prices as Black-Scholes implied volatilities. Hence, it is more
straightforward to express the local volatility in terms of the implied volatilities rather than option prices.

Taking s as the initial time, the undiscounted call price B, x ; in Black-Scholes model is given by

1
3 t,K\/?

$exVT
2 )

F.
Beie = Pyc (Foe®(dy) —Kd(d2)),  dy = log—* + t=t—s  (145)

where ¢ = &, i is the Black-Scholes implied volatility from market quotes and @ the standard normal

cumulative density function (with density function ¢). Its partial derivatives can be derived as

OBy s ad, dd_
= —T¢Byge + WP Fs o ®(dy) + Ps Fo e p(dy) —— — Pg [ Kp(d_) ——
dat dat dat
= —1tBy s + UePs Fs P(dy) + P Fs p(dy) i
o el AN
0Bk ¢ ad, ad_
ok = Por| Fsed(dy) 5 — Kp(d-) o — (d-) | = =P ®(d-) (146)
0B ad ad_
TE5 = P (Fuud(d) 55 = KB G7) = PucFied (VT = PuKNTg(d)
0?By k¢ _ P (d-) 0%Byi i _ Pg.d d_K¢(d_Wt 0°By i _ P p(d_)d,
0K? KevT FIE g ’ 0E0K g
where we have used
adi _ Ue d; adi _ 1 adi _ d$ azdi _ 1 (147)
ot &/t 2t' 0K  K&T 08 &’ 0KAE K&t
and the identity
Fs p(dy) = Kop(do) (148)
Further using the partial derivatives
aCt,K _ aBt,K,f + aBt,K,gE aCt'K _ aBt,K,f aBt’Klfﬁ
ot dat 0¢ oat’ 0K 0K a¢ 0K
(149)

0%C.x  0*Beyge Zath,K,f 0 OBxs 028 0Bk (65)2
0K?2 ~  0K? 0K0¢ 0K = 9& 9K2  0&2 \9K

we can derive from (132) the local volatility expressed in implied volatility
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aBt’Klf + aBt’K‘EE aBt‘K‘E aBt’K’fa_E + 1:: B
22 at 9 ot oK T9F oK ' tPekg

bk = 1K2 ath,K,s_I_Za Bike 6€+aBt1{f 625+6 Btkf(af)
2 0K? 0Kdé 0K 0¢ 0K? 0&2 \0K

+ ueK + ueK

(150)

&2+ 2¢t (65 + u K g}’i)

2
1+ 2v7Kd, g—f( +d,d_tK? (g—f;) + ETK? %

5.3.1. Formula in Log Spot Moneyness

The local volatility formula (150) can also be expressed in log spot moneyness or log forward
moneyness. Suppose we change the strike to the log spot moneyness £ = log(K/X) for the implied

volatility & = &, 4, the change of variable gives a local volatility expression as

52 + 28t (ai + i a;;)

L=
1+2\/—d+ >+ ddt (ﬁ) + & (g;i—%)
§ton (ai b afé)
= (151)
98 | (k2 _ &t (98 02§ _ 0%
1+(5T‘25) (gz ) )(_) +4t (akz_ﬁ)
§F+2n (ai e a;;)
- k 0E\% (&t 0€ 92¢&
(1-7a3%) - (7%) TRz
providing the following identities
0f  0f ok 10¢ 0%¢ @ (10&\ok 1 (9% 0¢ ok 1
dK  0kROK Kok’ W‘%(E%)W‘F(a—fafﬁ) K K
(152)
K =k &t
k—loga, di—ﬁi_

5.3.2. Formula in Log Forward Moneyness
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We may also want to have strike in log forward moneyness k = log(K/Fs,t) , which is defined in
(135), and express the local volatility in terms of the total implied variance v = v, which is equivalent

to €2, . We first derive the call value B = B, ,, in Black-Scholes model, equivalent to (145)

—k v
Biyy = s,th,t(cD(d+) - ekcI)(d_)), dy = 7 + - (153)

Its partial derivatives can be derived as

aBtkv ad+ ad— Ps th t¢(d+) Ps th)(d—)
5 (000028 ety 2) < Pt @) Py
av s,tt's,t ¢( +) av e d)( ) av 2\/5 2\/5
ath,k,v _ aBt,k,v( 1 d 6d+) _ aBt’k'v k2 1 1
ov: v 2v tov/) ov \2v2 2v 8
0B ad od_
S o ($(d) S - k() = 4 (d) T7) = Py ke d(d)
154
aZBt,k,v k k 1 aBt,k,v aBt,k,v ( )
k2 —P; Fse"®(d_) + Py F e (.'b(d—)ﬁ: 3k + 2 £
ath,k,v — i Ps,th,t¢(d+) — aBt,k,v (—d )% — aBt,k,v (1 _ E)
dkov 0Ok 2/ ov ok ov \2 v
0B, oF. )
att L = —1 By + Ps,t(‘b(d+) - ektb(d_)) azt = —TtBikv
providing the identities
od4 B k N 1 od4 B 1 156
w 23T 4y Ok (155)

Knowing (138), we can establish the connection of the local volatility £, to the total implied variance
v, x by deriving the following partial derivatives using chain rule

aCt,k _ aBt,k,v N aBt,k'v av aCt’k _ aBt’k,v n aBt’k,v av
at at ov odt’ ok 0k dv 0k

(156)

aZCt'k _ d aCt,k d aCt’k av _ ath,k,v n aZBt'k’v av n ﬁBt’k'v aZU " ath‘k,v (617)2
ok? 0k ok ov ok ok  0k? dkdv 0k ov 0k? ov? \ok

This gives the expression of local volatility as
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0Cu

02, =0t =

ok 1(62€t,k ac’t,k) 1(623 92B v , 9B d%v 02B(6v)2 0B aBav>
2

o dB 0Bov , ,
+ TtCt,k W + %W + T'tB

akz T2 kavok T avorz T 9v?

2

ok? 0k ok ok 0vdk
_ Jdv dt (157)
1 6_B+26_B+26_3(1_E)0_v+6_302_v+0_3(k_2_i_1)(0_v)2_O_B_a_Ba_v
2\ 0k ov ov\2 wv/ok o0dvok? dv\2v?2 2v 8)\dk ok dvdk
ov ov
_ ot ot

kov 1(k2 1 1\/0v\> 102v k ov 2 1 1\/1on\? 10%w
1‘5%%(?—5—1)(%) 2 9k2 (mar—1) - G+2)Eaw) 2 9k2
with the partial derivatives in (154).

5.3.3. Conversion between Log Forward Moneyness and Log Spot Moneyness

The expression for £ (t, #£) in (151) and for £ (¢, k) in (157) are often used to estimate the local
volatilities on a temporal-spatial 2D grid. The local volatility €4 (t,£) in log spot moneyness £ =
log(K /X) can be interpolated from a local volatility surface €5 (t, k) in log forward moneyness k =

log(K /Fy,) through the following conversion, or vice-versa

K K X, X,
£x(t, ) = Lp(t,k) = £p | t,log 7— | = £r £, log 7+ log 7> | = £r ( &, + log = (158)
S s,t

s,t st

5.3.4. Equivalency in Formulas

The £2 in (150), the £7 , in (151) and the £Z,, in (157) are in fact mutually equivalent. They are
all stemmed from the classic Dupire local volatility expression (132). We show this by deriving its
numerator and denominator in respective coordinate systems. For example, in (t, K, &) with Black-
Scholes call B = B, k¢, the numerator and the denominator can be obtained using (149) and then (146) as

v e, 9Cuc . _9B 0BO 0B 9B
- at #t rt t,K — at af at nut aK #t Tt

oK 9¢ 0K
_ 1 0B 9¢& 0
= Z_ETEGZ + 2¢&t (E + ”tKa_K)>

(159)
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1 0%k 1 ,(9%B 02B 0¢ OB 0%¢ 0%B [0&\*
D==K = == +2 —+——+—<—)

20 0Kz 27 \0K? ' "0K0oEOK = 08 0K? ' 082 \oK
__1098 + 2vV1Kd af+dd K2<65>2+ K*— 0%
= 2o \! +ox T AT G ) TR gk

0B
55 = PouFod (VT = Py Kp(d T

In (¢, #%,¢) with Black-Scholes call B = B, ;¢ , the numerator and denominator in (159) can be

transformed equivalently using (152) into

1 0B o0& 9&
N= fa_sf(fz 2t (01: T ak)>
_ L OB(( k3§ (rg ¢ -
26708 <(1 £ afa) (2 6/&) et akz) (160)

aBt'k'g

a¢

= Ps,th,t¢(d+)\/? = Ps,tekxsd)(d—)\/?

Lastly in (¢, k, v) with Black-Scholes call B = B, ,,, the respective numerator and denominator can be

derived from (137), (156) and (154) as

Coi .. _ 0B
ot Ttttk T 5, 5¢

N =

_1 9%Crie  0Ci\ _ 1 6ZB+2 92B 6v+6362v+623(6v)2 9B 0B v
k2 ok ) 2\0k? " “okovok ' dvok?  av? \dk

ok v ok
OB k ov kZ 1 1\ /0nr\? 10%v
_9B( _kow Lk 11 (—) =27
ov vok 4 v 4)\ok 2 0k?

aBt,k,v — Ps,th,t¢(d+) — Ps,tK¢(d—)
v 2\v 2w

Alternatively, we may prove their equivalency directly. For example, this can be done as follows

(161)

for the €7 in (150) and the 7, in (157)
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fz — at
T _kav kL Ly(@y), 10t
v ok 4v?2 4v 16)\0k 20k?

¢ + 27 (5 + ui )
-2k (55 ) (o) v (G ki €55

_ &2 + 26t (65 + uK 6;?)

v (1 28)guk o (- ) e (GF) o

&2 + 26t (65 + uK gf;)

= =ik
0 0 02 '
1+ 2v7Kd, a}’; +d,d_tK? (3 f) + 511{20—1{‘3;
where by definition we have
F. 2
k = log— g1,  d g 57 L R
= log—, v = T, ===t —, = ———
ng,t + f\/? » 2 + 4
and also the following identities
ov _ 9(&%T) ¢ 0 0K , 0¢ 0¢
Fri Tk B ( aKat) &t 25’( +“KaK)
dv_ 0% _0@*D)at 9@PDAK . 90K 5
ok~ ok~ ot ok oK ok XTakor - XK
0
o _o(skay)ar (K )ox  ( oc  ogor 0%
ok? ot ok 0K ok ok T Koxax T K ok

~ §\PoEaE 0%
= 2k <(6K> Txok * W)

(162)

(164)

Notice that in (t, k)-plane the t and K are no longer independent and end up with the derivatives below

a_K _ a(Fs,t exp(k)) — LK a_K _ a(Fs,t eXp(k))

at ot BT ok =K

5.4. Forward Smile in Local Volatility
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It is commonly observed that the implied volatility smile tends to flatten out as maturities become
large. This observation can be explained in short as follows. Assuming that the FX spot is driven by a
Brownian associated with a stochastic and mean reverting instantaneous volatility. Implied volatility can
be thought of as an expectation of the time average of the instantaneous volatility. The instantaneous
volatility evolves by nature in time wobbling around the mean reversion level to form a realized path. In
other words, this path is composed of many samples of the mean reverting instantaneous volatility. If two
samples of the instantaneous volatility are taken with enough time in between, they will appear
independent of one another given that the mean reverting effect is sufficiently strong. When the maturity
increases, it is as if we have more independent samples contributing to the average and therefore, we are
likely to get a result closer to the true mean reversion level with a diminishing uncertainty. Mathematically
speaking, the lower variance the average has, the flatter the smile will be [26].
It is ideal to use a simple model to further illustrate this finding. We may define a stochastic mean
reverting process Y; (known as Ornstein-Uhlenbeck process)
dY; = —kY.dt + {dW,, ;=0 (166)
where s is the initial time, k > 0 the mean reverting rate, { > 0 the volatility and W, the driving
Brownian. Since the Y; process can be negative, it is not a perfect example of the instantaneous volatility,
but still can be used as a good analogy for illustrative purpose. The analytical solution forY; is an Ito

integral
t
Y, =¢ j e~ =) qw, (167)
N

With T =t — s, its time average can be derived as

o1t 7 [t gt (f
Yt:—f Yudu:—f f e"‘(u‘”)dedu=—f fe_"(u_”)dudv'/v
T Jg TJ)g Jg TJs Jy

(168)
C t 1— e—K(t—v)
== | —dW,
T ,I; K v

The variance of the Y; and its derivative can be computed as
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T2 K K272

_ 2 ot /] _ p—k(t-v) 2 2 ot
W[Yt] — C f (_) dv — Z f (1 _ Ze—K(t—‘U) + e—ZK(t—U))dv
S s

+

¢ ( 21—e"“ 1—e‘2’“> _¢2 2KT — 3 + 4e7T — g7 2KT

K2T? K 2K 2k312
(169)
av[Y, 2 2
a[t ! = - K§T3 (2kT — 3 + 47" — 7 2KT) 2’5%2 (2K — 4Kke T + 2Ke2KT)
o, e—2m’ — 4o KT +3 e—Zm' —2e KT 1
=< K373 + K2T?
When k > 0, we can see that (by L'H@pital's rule)
= ovlY] 2 _ oV[Y,]

1 = i = -_— i = = 170
ltlllg V[Y;] =0, ltlirsl 5% 3 th_)rg V[Y;] =0, lim — 0 (170)

The above limits show that at very short maturities, the variance is close to zero and hence the smile is
flat. This can be understood as the instantaneous volatility not having enough time to move much. As the
maturities grows, the variance increases until reaching a maximum, and then decreases steadily. At
sufficiently long maturities, the variance again goes to zero, resulting in a flat smile. Note that it is
necessary to have non-zero mean reversion in the instantaneous volatility, so that the covariance V[V, Y, ]
between Y, and Y, for s < u < v diminishes when v is sufficiently larger than u (in other words, the Y,
and Y, become independent given enough time in between). This is not the case for x = 0, where the
variance will always grow, linearly in time, as shown below

{*t

o oGt 2. _
’lcl_r)r(l)Yt—;L (t—v)de, }lcl—%w[yt]_‘[_zjs (t—l?) dU—T (171)

Skew of local volatility also tends to flatten out as maturity increases [27]. Using local volatility
expression in (157), we see that the first derivative of local variance #ﬁk with respect to the strike
equivalent quantity k can be derived as

2
0fi, _100v 10vdD (172)

ok  Dokadt D?at dk

where v is the total implied variance and
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From the analysis in previous paragraph, we know that at long maturities (i.e., t is sufficiently large), the

quantity dv/dk becomes small, and the following quantities approach to zero at even faster rates

o\ 2 o> 0%v 03v
(50) ~o  (55) ~0 FE-0 FE-0 (174)

This allows us to approximate (173) by dropping these negligible terms

aD 10v
~ - 175
b=~1, ok v ok (175)
and further approximate (172) by
2
0%k _ ( a l@)a_” (176)
ok ot vadt/ok

The (176) tells that the skew of local volatility depends on the skew of implied volatility. As implied
volatility flattens out at long maturities, so does the local volatility, leading to a flattening of the forward
smile (i.e., the smile in the future), which is unrealistic. This is not desirable when an exotic option has

considerable exposure to the forward smile.

6. LOCAL VOLATILITY WITH STOCHASTIC RATES: GENERAL DUPIRE

A common extension of the classic local volatility model is to include stochastic rates in the model
dynamics, resulting in stochastic drift term of the FX spot. Terminal distribution of the spot has now
dependence not only on the diffusion term characterized by the spot volatility, but also on the stochastic
rates through the drift term. We want to find a general local volatility that is able to reproduce the terminal

distribution while taking the stochastic rates into account.
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6.1.  General Dupire Local Volatility
Suppose that the domestic short rate r, and the foreign short rate 7, are stochastic, the FX spot

process follows a general SDE

dox, .
> = (ry — f)dt + o, dW; a77)
t

where the volatility process o, can be stochastic and may also be dependent on spot X;. We can derive
the following identities for the call and put option
Ceie = Es[Ds e (X — K)*] = Es[Ds 1 (X — K)O(X; — K]

0C¢ i
0K

= Eq[Ds: X:0(X, — K)] + K

ac
o = ~E[Ds 00X, — K]
azct,K
=iz = Es[Dse8(Xe = K)] = Es[Ds,e| X, = K]ES[5(X, = K)]

(178)
:Pt,l( = IEs[Ds,t(K - xt)+] = [Es[Ds,t(K - Xt)@(K - xt)]

oP
=K— I"’('K — B[ Dy c X, O(K — X,)]
OP
o = Es[Ds, 0K — )]
OZ:Pt,K
K2 = [Es[Ds,t(S(K - xt)] = IIE':s[Ds,tlx‘t = K]IES[S(K — X))

where 0 is the Heaviside step function and § is the Dirac delta function. Further using Ito-Tanaka formula

(25) on the (non-smooth) terminal payoff function, we get

D 6(X¢ — K)d(X, X)¢
2

d(Ds:(Xy — K)*) = =11 D5 (X — K)*dt + Dy ,0(X, — K)d X, +

(179)
Dg; 6(K — Xp)d(X, X)),
2

d(DS,t(K - Xt)+) - —T'tDS’t(K - Xt)+dt - DS,tG(K - xt)dxt +

By Fubini's theorem, this allows us to write for the call option
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0Cr _ o [4(Dsr (X~ K)*)
ot Sl dt
= Eq le,t <_rt(xt —K)O(X: —K) + (r; — )X 0 — K) + 1X 6(xt K))l

LB [Ds 20252, — K] (180)

Eg[Ds ¢ (F: X, — 1. K)O(X, — K)| + >

1
Es[Dge (FeXe = eK)O(X, — K)] + 5 K?Es| Dy 02| X = K] E[5(X — K)]

1 02C, y Ey[Ds 02| X, = K]
. B _ 12 t,K “s| Vs, tPt t
]ES[Ds,t(rtxt reK)O(X, K)] + 2 K 0K? Es[Ds.tlxt = K]

and for the put option

0P _ p [A(Dse(K ~ X)7)
at  ° dt
= E; [Ds,t (‘Tt(K — X)O(K — X)) — (e — T ) X 0(K — Xp) + %xt O¢ F8(K — xt))l

1
Es[Dse (1K — #X)O(K — X)] + > Es [Ds X228 (K — X,)] (181)

1
Eg[Ds,e (reK — 7, X)O(K — X)] + EKZIE [Ds,c02|%: = K[Es[6(K — X)]

0%P, x Eg[ D 02|X;: = K|
0K?  Eg[Dse|X: = K]

1
[ES[Ds,t(TtK — 7+ X )O(K — xt)] + E[(2

where given the delta function, we have used the fact that

Eg[ D5 X2028(X; — K)| = K2Eg[Dg 02| X, = K|Es[6(X; — K)]

B[ Dy X225 08, ~ 0] = | Dy XZ0200K, — K)pa(@)do
Q

(182)
ff Stxto-td(xt K)pn(ﬂ|x=x)px(X=x)d7de

= (f Dy [K?ofpp(m|X = K)dn) <f (X, — K)py (X = x)dx)
1 x
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= KEq[Ds 107 | X, = K|E5[8(X; — K)]
Basically the (180) and (181) tell that

E [DS ey |Xt ] It +E [ 5.t (Pt Xy — 1K) O(X; — K)]
Es[Ds | X: = K] 1,,0%Cu
2 0K?
(183)
0P x N
ot + E [Ds t(reK — 7. X)O(K — xt)]
B 1,,0%Pk
2K 5x3

If we write the volatility term a; as a pure local volatility g (t, X;), which is a deterministic function of
X, the 6? can then be moved out of the expectation and the discount factor cancels. Hence, under the
condition of stochastic rates, we obtain

0C: oP

» _ Ot + [Es[Ds,t(f”txt -1 K)O(X; — K)] _ a;’K s[Ds,t(TtK — 7 Xp)O(K — Xt)] 184
Gtk = 1 o 02C, ¢ - 1 2 02P, (184)
2" OK? 27 9Kz

This is the general Dupire local volatility, expressed in call or put option, respectively. Please refer to [28]
for an introduction of the topic.

If we again assume the short rates r, = f;, and 7, = fs,t are deterministic (i.e., they are the
instantaneous forward rates as in classic Dupire local volatility), the (183) simplifies (using relations in
(178)) to the classic Dupire local volatility formula (132) and (133), that is

f%,K = Es[0t2|xt = K]
GC}K aCtK

B + (fst fst)K + fstCtK —a7 t (fst fs t)K + fs tPek (185)
B 02 ct,( 02 ?t,(
2K oK* zK 9K?

This indicates that the conditional expectation of the instantaneous stochastic variance is equal to the
classic Dupire local variance [29]. In other words, local variance is the risk-neutral expectation of the
instantaneous variance conditional on the final spot X; equal to K [30].

By further defining (centered) rates as
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Ae =1 = fspr it =Ty — fs,t (186)
we can write the difference between the general Dupire local volatility g, x (184) and the classic Dupire

local volatility €, , (132) and (133) as

ES[DS't(/itXt - AtK)G)(xt - K)] _ ]ES [Ds,t(AtK - itxt)G(K - xt)]
1.,,0%Cek - 1,,02Pk (187)

2K 5k 2K =2

_ 2 2 _
Yexk = @tk — ek =

K

As one can see, the difference y, x is determined by the 3D joint distribution of FX spot and both rates.
Since that the two denominators in (187) are equal (from (178) and (125))

0%Crx  0%Pu
s = 3k = Es[Ds:8(X: — K)] = Psypex  and O(K —X,)=1-0(X,—K) (188)

the two numerators must also be equal. Given the fact that

0K —X,) =1-0(X,—K) (189)
we can show that

Es[D (1.2 — 2, K)0(X, — K)| = Eg[Dse (2K — 2.2, )O(K — Xp)]

= —Eq[Dsr (X — 2,K)(1 - (X, — K))]

= E[Ds (126 — 1. K)0(X, — K)| — Eg[Ds,e (1656 — 2:K)] e
= Eg[Ds¢(1:X; — 4:K)]| = Es[Ds:A:X:] — KEg[Ds 2] = 0
The (190) can also be shown by simply observing that
Eg[Ds 4| = Eg[Dse1e| — f5cEs[Dse] =0  where
191
EolDacl = P EalDoene] = ~Eo[ 0] =~ ZEl[D] = -2 = ooy, -
and
Eg[Ds ¢ A: ;| = Eg|Ds o 7eX:] — f5,cEs[Ds:X:] =0  where .

Eg [Ds,tf't‘xt] = xsEs [D\s,tf't] = xsfs,tﬁs,t = fs,tps,th,t
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N

P, . X P. . X
au tlzpst ;‘)t > = s,th,t
s,t

Es[Ds,eXe] = MiEs [%] = Py, [
From (188) and (190) we can see that both numerator and denominator of (187) vanish at wings of
volatility smile (i.e., K is either very low or very high), this will demands special treatment to avoid
divided-by-zero when estimating the y, , numerically.

6.2.  The General Dupire Model

We may construct a 3-factor model that features a local volatility (e.g., the general Dupire local

volatility g, ) for FX spot and 1 factor Hull-White dynamics for rates

t t
e = fsr+ ] by By, du + Xy, Xy = j ButdWs dx; = —px.dt + ¢.dWy
S S

t

t t
fr = fst+ f byt rdu + Xt X = _f Pglﬁu,tg*u,xdu +_]- BucdWi 4,
s s s (193)

dx, = _(Pglétg*t,x + I«A‘ft)dt + CedWi
- 1 .
dXt = (A't - A't - Eg%'X) dt + g‘t,XdWO,t’ dWl',thVj,t = p;]dt V l,] = 0,1,2

where X;, X; and x; are the state variables. To minimize the drifting, we define X, = log(xt/FS,t) the log
forward moneyness with FX spot X, and forward Fy . = X P, /P .. The (centered) rates 4, and A, are
given in (186), where r, and 7, are the domestic and foreign short rates respectively (where a variable with

a “hat” accent denotes a quantity associated with foreign economy).

Table 4. Notations in the general Dupire local volatility model

Notation Description
X FX spot
Fg: FX forward, Fy, = X;Pq./Ps.
P, P, domestic and foreign zero-coupon bond
X¢, Xt domestic and foreign rates state variable
Ty, Tt domestic and foreign short rates
foir fo instantaneous forward rates
e, Ay centered short rates, A, = 1, — f;
But: ,éu,t volatility of forward rates
by, Bu,t volatility of zero-coupon bond
WU, i constant mean reversion of short rates
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St Gt volatility of short rates

X, FX log forward moneyness, X, = log(X;/Fs )
g(t, X;) general Dupire local volatility
pl, p? pt? correlation between X,, #; and r;

6.3.  Stochastic Rates: One-Factor Hull White Model

In the Hull-White model?, the short rate r, and its driving process x, are given by

t t
e = for + f by Py rdu + x¢, Xy = f BucdWy, dx, = —ux.dt + ¢, dW, (194)
S S

where S, . is the volatility of the instantaneous forward rate f,, ., and b,, ; the volatility of the zero coupon

bond P, ;, respectively, which are given below

t 1 — e~ H(-u)
But = e_”(t_u)Cu: by = _j- Buydv = TCW byt — byt = berPut
u
(195)
lim .Bu,t = Cuw lim bu,t = (t - u)gu
u—0 u—0

In practical applications, the model (194) usually takes a time-invariant i, which is often an exogenous
model input, and calibrates (deterministic) piecewise constant term structure ¢, suchthat¢, = ¢; Vt;_; <
t < t;, to caplets or co-terminal swaptions. The reason a time variant g is not in favor is that it makes the
evolution of forward rate volatility strongly non-stationary. This has been intensively discussed in [31].

Writing the model (194) in a more familiar form, it would look like

_ _ 10fs:
dry = u(6, — rp)dt + ¢.dWs, 0 =fsr +———

1 t
PET +;_1f ﬁﬁ_tdu (196)
S

Below we derive the integrals for the variance and covariance, which are further expressed in summations

providing the ¢, is piecewise constant in time

! Formal derivation of the model can be found in my notes “Introduction to Interest Rate Models”, which can be
obtained from https://modelmania.github.io/main/
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1 — e—#(t-w)
Xst :f utﬁutdu _f Cze_ﬂ(t wW———du
s u
—Zut t
f e““du— fc e?#idy
s s
e—ut ¢ e—Zut t
— 20,Uut; i— 20,2ut; _ ,2uti_q
= ZZCj(eJ ZZZCj(e J— e
# j=s # j=s

(197)

t

t 1 2

hm)(st = f (t —w)sidu = tz ¢ttt —tji-1) _Ez 67 (t; —tj-1)
J=s J=s

2 C} (ezut] Zut] 1)

—Zut

t t t
O = | Bredu= [ he 0y = e [ ggenmau =
N N

N

t
: — 2
lim ¢ = Z ¢i(t — tj-1)
j=s
The time t zero coupon bond for a maturity T admits an expression as follows

p b2
Pt,T=PS—’TeXp(—f —”du j(buT ut)dW)
S

st
2
P t(b,—b +2b, b, — Db
=57 exp | — ( wr u't) u't( ) u't) du — byrx;
Ps 2
(198)
P, T bl?,T ‘ ‘
= PS exp <— TJ 'B.itdu - bt'T j bu,tﬁu,tdu - bt,Txt
s,t s S
Pgr 1
= PS exp (- Ebg_rﬁﬂs,t - bt,TXs,t - bt,Txt>
st

Model calibration relies on the fact that a forward starting zero coupon bond under T-forward measure is

a lognormal martingale, that is
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_ Py Psy tbz,
t,T s,T N

, (199)
P E(byy —b t
=Lexp| — f Mdu - f (buy — byr)dWl
P T s 2 s ‘ ‘
where we have used the change of measure
aw,l = dWy, + b, rdu (200)
We may also write
Py Py 1
Pery = a = P:T exp (_ Efsz,t,T,V - fs,t,T,VZt) (201)
where Z, is a standard normal random variable and the volatility ¢, . 7 is defined as follows
t t [o-u(T-1u) _ p-p(V-1u)\?
2 e e
ey = | (uy = bur)du= | ( ) G du
N N ,Ll
, (202)
e HT — e‘“V>2 ft e HT — g=HV\? 1
— eZuuczdu — < ) _ECZ(eZMtj _ eZutj_l)
( u s “ u 2uda’™
j=s
When u — 0, we have the limiting case
t
lim &2y = (V=12 )" 63(5 = 1) (203)
j=S

The calibration to caplets is trivial. Below we will focus on the calibration to co-terminal swaptions.

6.3.1. Model Value of Swaption: Jamshidian Decomposition

The payer swaption traded at s and expired at t < t, can be priced by (after change of measure

from Q to Q?)

b +
Vsptsab st[E (Z PtlT (Ltl K)) = s,t[Eg (Pt,a_Pt,b_K Z Pt,iTi>

i=a+1 i=a+1

(204)

D ¥ 1 if i=a
= Py E¢ <2 CiPt,i> ) Ci ={ —T;K if a+1<i<b-1

i=a
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with the forward bond price

P = ——exp ( fs tti Es,t,t,iZt> (205)

As can be seen, the forward coupon bonds P, ; with different maturity ¢; are all driven by a common
standard normal random variable Z,. This affine term structure allows us to compute swaption value in
the model using a method proposed by Henrard [32] in 2003, which is basically a variant of the
Jamshidian’s decomposition.

We elaborate the method below. In the one-factor Hull-White model, the (204) can be written as

1
Vitap = J (Z 8; exp(— flz)> ¢(z)dz, 6= c;Ps;exp (—Efiz> (206)
where &; = &, .; for brevity and ¢(z) is the standard normal density function
#(2) = —=exp(~52?) (207)
z) =—exp|—%z
Vzm P\T2
Let h(z) be the payer swap payoff function in (206), that is
b
h@) = ) 8 exp(—£i2) (208)
i=a

The h(z) can be regarded as a sum of exponentially decayed 6; with non-negative decaying factor ¢&;.
Since §; has the same sign of ¢;, we can imagine that the §;’s are all positive up to a certain i = k (e.g.,

i = a for positive K or i = b — 1 for negative K), then all negative. Let’s define another axillary function

9(2)
b
9(2) = h@) exp(En) = ) 8;exp((Ee — £07) (209)

Because ¢; is monotonically increasing as bond maturity grows (i.e., &; < &4 for t;.1 > t;), the §; and
(& — &;) now have the same sign. Therefore g(z) is strictly increasing. Since g(z) is negative when z —

—oo and positive when z — +oo, the monotonicity in g(z) ensures that there is one and only one solution
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z* such that g(z*) = 0, and so is it for h(z). In other words, given the unique z*, the h(z) < 0if z < z*

and h(z) = 0 otherwise. Hence the payer swaption price in (206) can be transformed into

Vihar= [ Zaexm fz)qb(z)dz—z [ e (-3 —se)as

= i 8; exp (%ELZ) (1 - O(z" + fl)) = i ciPs ®(—z" — &)

(210)

using the identity

jbexp(—%xz_ﬁx)dx=%exp<§><db(b\/§+%>—d><a\/5+\'/%>> Va>0 (211)

where @ (+) is the standard normal cumulative density function. In the case of a receiver swaption, it differs
from payer swaption only by flipping the signs of ¢;’s (and thus the signs of §;’s). The same argument

still applies, which gives the receiver swaption price as

b

VES,, = Z f exp (527 i) dz = = ) P0G+ 6) (212)

i=a
This is consistent with the put-call parity in swaptions, where the underlying swap value should be the
payer swaption premium minus the receiver swaption premium.

Note that the formulas (210) and (212) are applicable only if the solution z* is unique. The
argument that §;’s are all positive (negative) up to a certain i = k then all negative (positive) is a sufficient
but unnecessary condition for the uniqueness of z*. It ensures §; and (&, — &;) having the same sign and
therefore the monotonicity in g(z). However, even if the condition was not satisfied (i.e., the §;’s change
several times of sign, so do the ¢;’s) and the monotonicity in g(z) could not be guaranteed, there would
still be a good chance to have a unique z*, especially when the sizes of irregular §;’s are reasonably small
[33]. Nevertheless, if the z* is however not unique, the exercise domain of an option will be a union of
disjoint intervals rather than a single interval, calculation of the integral must then be done by numerical

integration methods.
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6.3.2. Market Value of Swaption

The market value of a swaption is often quoted in lognormal volatility or normal volatility. The
latter is often in favor due to the prevailing low or even negative levels of sovereign interest rates after
2008 financial crisis. Knowing that a swaption is actually a contingent claim on swap rate, we may price

the payer swaption in the market by

b

. AP = Z TPy (213)

i=a+1

Fka _'F%b

Viias = AVES (ST -K)T] s =t
t

The swap rate Sta'b for s <t < t, is a martingale under the swap measure Q*? with annuity A‘t"b as the
numeraire. If we assume St“’b is a lognormal martingale, we can compute its value by Black formula using
the market quoted lognormal volatility ¢,y with v = ¢, (t — s) fort = ¢,

VSP.)tS.a.b = A?'bEB(K; Ssa'b, v, 1)

(214)

1 F
e gl d_=d+_\/§

BK,F,v,w) = woF®(wd*) — wK®(wd™), dt =—log—+
Vv °K
On the other hand, if assuming Sf'b is a normal martingale, we can compute its value using the market

quoted normal volatility ¢y with v = ¢Z(t — s)
VES.p = ASPEL? [(S87 — K)'| = AZPES [(S2? + 2vv — k)| = A2 (K, 520, v,1)  (215)

by the Bachelier formula 9t(K, F, v, w)

(216)

(K F,v,0) = - K)® <M> +vg (M)
Vv

Vv
6.4.  Transition Probability Density Function

To calibrate the general Dupire local volatility, we must know the joint distribution of the FX spot
and both rates in order to estimate the y, x in (187). It is worth mentioning that zero correlation parameters
in the model (193) do not necessarily lead to vanishing expectation in the numerators of (187). This is

because that these correlation parameters only characterize the dependency structure among instantaneous
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changes of the stochastic drivers of the state variables. Obviously, the FX spot has explicit dependency on
both of the short rates through its drift term.
Let us define a function h(t, X, X, x), which can be regarded as the discounted (i.e., numeraire

adjusted) transition probability density function characterized by the SDE (193)
t
h(t,X, 55' X) = Ds,tp(t; Xr 2; X) = Ds,tp(t;Xt; Qt; xt|S'X515551 xs)' Ds,t = €xp (_J rudu> (217)
N

where Dy, is the discount factor in domestic currency. The p(t, X, X, x) = p(t, Xy, X¢, x¢|s, X, X, X)) IS
the transition density under risk neutral measure, which has full knowledge of terminal distribution of the
state variables, and its evolution is governed by the Fokker-Planck equation (10). Noting that D, is not a

function of any of the time t state variables, we can write

oh dp
E = —T‘th + DS,t E (218)
Further expanding the dp/dt term by (10) gives the forward PDE of h
a (At_/;{t_lg'gX)h 01~ A
oh__, 297 0 ((pP¢cgex + eR)h) | 2Guxh)  10°(g3xh)
at 't 90X 0% ox 2 0Xx?
laz(éfh) laz(Cch) + aZ(Pglftgvt,Xh) n aZ(PgZCtgvt,Xh) (219)
2 0x? 2 0x? 0X0x 0X0x
" 0%(pi?se6eh)
0Xx0x

with initial condition ltim h(t,X,x,x) being a 3D Dirac delta function. For numerical solution, we may
S

approximate the initial condition at t = s + t for a small time interval t by a 3D Gaussian density

function with zero correlations

ltl_l')l;l h(t, X, 55! X') ~ PS,td)(Xl[E[Xt]t W[Xt])(p(fl[E[ft]t W[ft])(p(xlm[xt]ﬂ V[xt])

N2
¢ (x|u, 0?) = exp (— u), E[X,] = —%{)ZT, V[X,] = #%z, (220)

o2

E[%.] = _Pméffj V[x,] = 627' E[x.] = 0, Vix.] = CZT
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where ¢ is the classic Dupire local volatility. The coupling of the discount factor and the density function
in h allows us to compute present value of an asset under domestic risk neutral measure simply by a 3D

integration once we know the h
Es[Ds V(£ X,%,x)] = f f f V(t, X, % x)h(t, X, %, x)dX dX dx (221)
RYRYR

6.5.  Model Calibration by Forward PDE

The calibration procedure is summarized as follows:

1. For the first time step, the initial density h(t,) is taken to be a 3D Dirac delta function
(approximated by the 3D Gaussian density) and we assume g(t,, X) = £(ty, X) (i.e., using classic
Dupire local volatility for the general Dupire local volatility)

2. For each time step from t; to t;,;, we evolve the density one time step forward from h(t;) to
h(t;+1) by (219), using previously calculated g (t;, X)

3. Use the resulted h(t;,,) to compute the volatility adjustment y(t;,,,X) in (187), specifically we
evaluate the numerator and the denominator using the h(t;,).

4. Use the computed volatility adjustment y(t;,,, X) along with the classic Dupire local volatility
2(t;,+1,X) to compute the general Dupire local volatility g (t;,,, X) for the time interval from ¢, ,
10 t;4,

5. Repeat steps 2 to 4 until the density function has been evolved all the way to the maturity
However, there are two difficulties in the above procedure. Firstly, we are going to solve numerically with
an extremely peaked Dirac delta density for the very first time step from t, to t;. A solution to this
problem is that we may skip solving the PDE and approximate the h(t,) directly to be the 3D Gaussian
density using £(t,, X) along with other parameters for the state variables. Secondly, when we estimate
y(t;+1,X), both numerator and denominator in (187) vanish at wings of volatility smile. We must design
a cutoff point beyond which the volatility adjustment can be safely ignored. To minimize the numerical

instability, we take the following steps
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1. We can estimate the numerator in (187) using the call or the put expectation at different strike

6.5.1.

levels, e.g.,

¢ = Eg[Ds (1 — 2.K)0(X, — K)| = f f f (A:X: — 2:K)h(t, X, 2, x)d% dx dX
k RYR

k
p = ]ES[DS,t(/‘{tK - itxt)O(K - xt)] = f f f (A‘tK - /itxt)h(t,X, 56\, x)dx\ dx dX
—o JRYR

When the strike level is below the ATM strike, we take the expectation from the put, otherwise
take the expectation from the call.
The denominator in (187) is associated with the second derivatives of option prices with respect
to strike. As (188) shows, they are merely the discounted transition density at the strike level.
Basically, there could be 3 ways to estimate the denominator:

a. Use the formula provided in (159), (160) or (161), which is the same denominator term

when estimating classic Dupire local volatility along with a Black-Scholes vega
b. Use finite difference to approximate the second derivatives
c. Use numerical integration of the density function h, as in (188)

0%Cex  0*Prk dX h(t,X)
aKtZ' B aKtZJ = B[ Ds 8 (Xe = K)] = Poepe = Ps,tpt,Xd_K " K

1
=—j Jh(t,X,a?,x)da?dx
K JrJr

We are in favor of the 3" method. Not only is it easy to estimate (given that we already know
h(t, X, x, x) function), but also it helps to offset the numerical noise in the numerator, which is
also estimated from the h(t, X, X, x) function.

Numerical Solution of Forward PDE

Lastly, we elaborate a bit about the method for solving the PDE. For the sake of relatively easy

implementation, we seek to solve the forward PDE (219) numerically using Marchuk-Yanenko locally one
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dimensional (LOD) method* [34] [35]. In this method, the PDE (219) breaks into three sub-PDEs, one for

each direction. However, the cross terms prevent this from occurring and they are handled explicitly in

the X step
< ~  Gix g?
a (l‘lt—/‘lt—_’>h’ az<ﬂh> R
a_h:_rh_ 2 n 2 +02(pglgtg,txh)+02(pt Ct‘}txh)
at t X 9X?2 0X0% X 0x
n az(PtlZCcéth)
0x0x

A A A~ 62
on _ 0 ((p24ugux +ac)h) O (1)
" 0% 92

g.2
on _ o(uxh) O (1)
ot ox dx2

For the X step, we may transform the PDE into

o ~ 9 d Ptx
== (1 —Tx+ Oh, Tx—(ﬂt_’lt)a_x_<ax+aX2><2 >

with the cross-term operator

2(Pt $ePix ) az(Pt CePex ) 0%(pi?cee )

¢= 0x0X 0x0X 0x0%
a(g’tX') (g’tX ) 0
— H01a ,
=Pt St =% 3% ox + p? Ctax aX + pt gfangax

= p'DxDs + p*Dx Dy + pi?DeDy = Dx(p* D + p?Dy) + pi2DeDy

0
Dy = ﬁ(%,x ')’ Dy =G,

Let T = t;,, — t; be the time step size, we may evolve the PDE in time implicitly by

hi+1 - hi

- = —Thl-+1 - TXh’i‘l'l + C = (1 +7r7+ Txf)hi+1 — h’l + 7€

L A brief introduction to finite difference method can be found in my notes “Introduction to Interest Rate Models”,

which can be obtained from https://modelmania.github.io/main/
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For the X step, we do it similarly

ah_Th 7o = 01g 6+A6(9?-)+c”t2 02
at - Ixlh X = pt Ctg’t,X af ”t af 2 622 (226)
hiyy — hi = Tethiyy = (I = TeDhi = by
and for the x step, we have
oh o(x+) ¢t 0
— =Tyh, T, = —
dat x x = He 0x 2 0x? (227)

hiyp —hy = Txthiy, = (I =T, Dhiy = hy
For each time step, t; to t;,,, we must loop through the X step, X step and x step sequentially. The result
from previous (spatial) step will be used as starting point for the next to evolve over the same time interval.
For example, we first take the result of the previous time step and use it as the starting point for the X step.
The result of the X step is then used as the starting point for the X step as we evolve again over the same
time interval. Finally, the output from the X step is then used as the starting point of the x step. Once we
have evolved all three variables from t; to t;,,, we compute the integrals for the volatility adjustment.
6.6.  Pricing by Backward PDE
The pricing is done through solving a backward PDE subject to proper boundary conditions

oV g2, 0% 2oV

ov - gV . v
T = (2 ) T Pt 1) T - B -
(228)
S . L v 9%
2 Ox? Pt Ct‘%’ana)? Pt Ctgt'anax Pt gtCtaxap?

where V = V (¢, X, X, x) with a terminal condition being the payoff of an asset upon maturity. Again, we
use Marchuk-Yanenko locally one dimensional (LOD) method for the solution. The PDE breaks down

into the following three sub-PDEs
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av v (13 gix\OV gix 0%V 0%V 0%V
at Tt t t 2 ) ax 2 9X2 pr gtg‘tX 9X0% —pf Ctgva Xox
0%V
Pt~ CtSt 9x0%
(229)
v v ¢2ocv
Frn (Pt $eex +.Utx)a,\ 2 > 972
v ov ¢t oV
ot ' ox T 2 oaz
For the X step, we evolve the PDE backwards using an implicit scheme, as described below
v giy( 0 0
— =T _ T, = AL R -
g - Ve Ke=ntT ooy axz - (- 1) 5%
(230)
Vi=Vig B
— = TxViii—c= U+ Txt)Viy =V, +1C
where the cross term is estimated explicitly in the X step
014 0%V 02 0%V R %
C=pt Ctht,Xm-l'pt CtPtX Avan 9Xox +p¢ CtCta 9%
ad 0 ad 9] a 0
(Pt CtaAthXaX pe Cta thXaX pi Cta Cta )V
(231)
Pt
= DD, + Dx(D, + Dy)
(pi’lp” 8 : )
0 0 0
Dy =guxgy De=piCimzs  De= PGy
For the X step, we have
ov d ¢ 02
— =T T. = (p°l¢ 1.8) — — 2L —
at xV, X (pt Ctgt,X + lutx) af 2 656\2 (232)
Vi-Via =TV, = U+ TV =V,
and for the x step, we have
ov 0 ¢2 02
A - R 233
ot - Ve = mxg S5 (233)
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Vi—Viy =TV, = [+ T, 0V, =V,
Similar to what we have done for the forward PDE, for each time step, t; to t;_;, we loop through the X
step, X step and x step each individually. The result from previous (spatial) step will be used as starting
point for the next to evolve over the same time interval.
For barrier options, it is often more convenient to use grid in log spot moneyness, e.g., X, =
log(X;/X,), for simple treatment of boundaries. The corresponding spot dynamics in (193) is then

transformed into
- ) 1 > _
X, = (Tt — T Eg*t,)?) dt + g zdWo s, (234)

The local volatility component g(t, X) can be interpolated from the calibrated g (¢, X) surface through

conversion in (158), that is

e & Xt Xt Xs - Xs
3t X)=9tX)=g(tlog=—|=g|tlog=+1log— | =g | t,X + log— (235)
F X, Fy, F

st s,t

Let 7V = V(t, X, %, x) be the corresponding value of a discounted contingent claim. The change of variable

from X to X would produce a PDE that differs from (228) only by the term A, — A, that replaces r, — 7,

in coefficient of V7 /0X. The PDE can be solved in the same manner as stated previously.
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7. STOCHASTIC LOCAL VOLATILITY: ORNSTEIN-UHLENBECK DUPIRE

Ornstein-Uhlenbeck Dupire model, a full-fledged 2D stochastic local volatility model. The
stochastic volatility component is modeled as an Exponential Ornstein-Uhlenbeck process with mean
reversion. Calibration of the local volatility component is based on Gydngy theorem by 2D forward
induction. (Available upon request ...)
8. STOCHASTIC LOCAL VOLATILITY: MARKOV CHAIN ORNSTEIN-UHLENBECK DUPIRE

Markov Chain Ornstein-Uhlenbeck Dupire model. A simplified version of the OUDupire model.
The stochastic volatility component is assumed to be driven by an independent discrete Markov chain
process, equivalent to the Exponential Ornstein-Uhlenbeck process in OUDupire model. This
simplification greatly improves computational efficiency as it avoids solving 2D PDE in calibration.
Instead, we solve 1D PDE at different state levels and remix the states in a forward induction manner.
This model is superior to the MixedDupire model as it possesses mean reversion dynamics, which is more
realistic to describe the forward volatility dynamics. (Available upon request ...)
9. STOCHASTIC LOCAL VOLATILITY: MIXED DUPIRE

Mixed Dupire local volatility (MixedDupire) model and its variants have been widely used in the
industry to price first-generation FX exotics. It is a simple stochastic local volatility model. Its stochastic
volatility component is modeled as an initial random shock that calibrates to volatility smiles. The local
volatility component is calibrated based on Gy&ngy theorem by solving 1D PDE at different state levels
of the initial shock and remixing the states in a forward induction manner. (Available upon request ...)
10. STOCHASTIC LOCAL VOLATILITY WITH STOCHASTIC RATES: MIXED GENERAL DUPIRE

Multi-state general Dupire local volatility model. This is a stochastic local volatility model with
stochastic rates, extended from the GeneralDupire model and the MixedDupire model. The stochastic
volatility component is modeled the same as in the MixedDupire model, which is driven by an initial
random shock. Both stochastic rates are modeled as Hull-White 1 factor short rate model, the same as in

GeneralDupire model. The local volatility component is calibrated based on Gy&ngy theorem, by solving
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3D PDE at different state levels of the initial shock and remixing the states in a forward induction manner.
(Available upon request ...)
11. LocAL VOLATILITY: PDE BY FINITE DIFFERENCE METHOD

In this chapter, we will present a PDE based local volatility model, in which the local volatility
surface is constructed as a 2-D function that is piecewise constant in maturity and piecewise linear in log-
moneyness (for equity) or delta (for FX). Due to great similarity between FX and equity processes, our
interest lies primarily in the context of equity derivatives, the conclusions and formulas drawn from our
discussion here are in general applicable to FX products with minor changes. In contrast to the traditional
way to construct the local volatility by estimating highly sensitive and numerically unstable partial
derivatives in Dupire formulas, this method relies heavily on solving forward PDE’s to calibrate a
parametrized local volatility surface to vanilla option prices in a bootstrapping manner. Once the local
volatility surface is calibrated, the backward PDE can then be used to price exotic options (e.g., barrier
options) that are in consistent with the market observed implied volatility surface.

Before proceeding to the PDE’s, it is important to have an overview of the date conventions for
equity and equity options. The date conventions for FX products are defined in a similar manner.
11.1. Date Conventions of Equity and Equity Option

The diagram illustrates the date definitions for an equity and its associated option. The quantities

appeared in the diagram are listed in Table 5.

< 8o = tom — to
Aoy to,s
U A A SN AV
A T
B —
Ae,S T te.S tl e tl 14
;O 8 = tem — to
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Table 5. Dates of Equities and Options

attribute symbol description remark/example
trade date to on which the equity/option is traded today
equity spot lag Ags equity premium settlement lag 3D
equity spot date tes on which the equity premium is settled tes = to D Aes
equity maturity date tem equity maturity date tem = to D 1Y
equity pay lag! Aep lag between ¢, ,,, and t, ,, e.g., same as A, g
equity pay date tep on which the equity payoff is settled | tep = tem D Acp
i-th dividend 0; dividend payment amount
i-th ex- div. date tie ex-dividend date
i-th div. pay date tip dividend pay date
option spot lag Ao s option premium settlement lag 2D
option spot date tos on which the option is settled tos =to D Aps
option maturity date tom option maturity date tom =to @ 1Y
option pay lag Aop lag between t, ,, and ¢, ,, e.g., same as A, g
option pay date top on which the equity payoff is settled | t,, = tom D App
day rolling &) rolling with convention “following” Following
calendar defining business days and holidays US/UK/HK

As most of the quantities are self-explanatory, our discussion focuses more on the treatment of
equity dividends.
11.2. Deterministic Dividends
In our example, we can assume both the short rate and the dividend rate are deterministic and

continuous, e.g., time-dependent r; and g, as in (122). the equity forward in this case can be calculated by

Pr (te,S' te,p)

P,(s,t) = exp <— ftqudu), P.(s,t) = exp (— ftrudu>

In a more realistic implementation, we may assume the underlying equity issues a series of discrete

F(to, te,m) = X(t,) where

(236)

dividends with fixed amounts in a foreseeable future. It is obvious that the equity spot still follows the

SDE (122) with g; = 0 in between two adjacent ex-dividend dates (There is discontinuity in spot process

! Equity settlement delay
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on ex-dividend dates that demands special treatment. This will be discussed in detail in due course). With

fixed dividends, the equity forward becomes

X(to) - Zi HiPr(te,s’ ti,p)
Pr(tes tep)

F(to tem) = for to <tie <tem (237)

where 6; is the fixed amount of the i-th dividend issued on ex-dividend date ¢; ..

Discrete dividend can also be modeled as proportional dividend. It assumes that at each ex-
dividend date, the dividend payment will result in a price drop in equity spot proportional to the spot level.
For example, the equity spot before and after the dividend fall has the relationship

X(tie+8)=X(tie —2)1 — 1) (238)
where A denotes an infinitesimal amount of time and n; the proportional dividend rate at ex-dividend date

ti .. By this relationship, we can write the equity forward as

1:(1 = n;
F(to tem) = X(tO)M for to<tie <tem (239)
Pr(te,s' te,p)

Sometimes it is often more convenient to approximate the fixed dividends by proportional

dividends. The conversion can be achieved by equating the equity forward in (237) and (239), such that

1
1_[(1 - 771') =1- )Tto)z HiPr(te,s' ti,p) for to < ti,e =< te,m (240)
i

i
The proportional dividend n; can then be bootstrapped from a series of fixed dividends 8; starting from
the first ex-dividend date.
11.3. Forward PDE

In the following, our derivation relies on the spot process X, given in (122) and its variants.

Specifically we may write the SDE (122) in terms of log-spot 3, = log X, or centered log-spot z;, =

log(Xt/Fs,t)
1 1
dz, = (,ut - Eq(t, z)z) dt +¢(t,z)dW, and dz; = —Eg(t, z)2dt + ¢(t, z)dW, (241)
where ¢(t, z) and ¢(t, z) are the local volatility function in z and z, respectively.
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Let’s denote the forward time variable by t for s < t and use centered log-spot z;, for the process.
Given that z; = 0, the value of a normalized undiscounted call can be defined as

Corsz _ E[(Xe — K)'|s, Xs]
Vt,le,Z = F = = F > (242)
s,t s,t

where k = log(K /Fs,t) is the strike in log-moneyness (as in (135)). Let ¢, , be the local volatility function

in k, which is equivalent to ¢, ,, we can derive forward PDE for V, ;s , from (144)

av, av,
ggk _ Fs,t glzls,z + .uth,tVt,kls,z - UtCt,kls,z _ E?S’Z
2 F azvt,kls,z _ th,kls,z azvt,kls,z _ th,kIs,z
st gk2 st ok 0k? ok (243)
— th,kIs,z _ ﬁ aZVt,kls,z _ th,k|S,Z
at 2 0k? ok
with initial condition
+
C E|(Xs — Fse*) |5 X
Viilse =~ = (& =B o] (1 - ey (244)
E s E
using the partial derivatives
th,kIs,z _ 1 aCt,kls,z th,kIs,z _ 1 aCt,kls,z azVt,kls,z _ 1 62Ct,kls,z
Qo T — UtVekls,z == , =——"—""  (245)
ot Fo¢ Ot S ok Fo. Ok 0k? Fg, 0k?

The PDE (243) appears drift-less and provides more robust calibration stability at low volatility and/or
high drift due to the “transparency” of drift in the PDE.

11.3.1. Treatment of Deterministic Dividends

A (discrete) dividend pay-out will typically result in a drop in equity price on the ex-dividend date.
Suppose that time t is the ex-dividend date, the no-arbitrage condition states that at t the time right after
the ex-dividend date (e.g., the difference between t and t can be infinitesimal), we must have

X, =X, —6, (246)
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where 6, is the value of dividend issued at ¢t (note that in a rigorous setup the value must take into account
the discounting effect due to dividend payment delay). Since a forward is expectation of spot under risk
neutral measure!, we may write

Fyr = Es[X;] = Es[X; — 6,] = Fsr — E,[6;] (247)
Under the assumption that 6, is a fixed amount, it reads

Fs:=Fs¢ — 0, (248)
In our finite difference method, the spatial grid for log-moneyness k is assumed uniform such that k; —
k;_, is constant for all i. Dividend payment causes discontinuity in the underlying spot. Evolving the
forward PDE (243) from initial time s produces a state vector V, ;s , at time t. Immediately after the
issuance of dividend at time 7, the spot and forward drop the same 8, amount and hence the state vector
Vz k|s,z Must be realigned to reflect the dividend fall. This can be done using the option no-arbitrage
condition, such that

Cr,kls,z = [Es[(Xr - K)+] = [Eg [(Xt -0 — Fs,'rek)+] = E; [(Xt - Fs,tek)+] = Ct,k|s,z

K (249)

- F; e+ 6,

where k =log——
Y

Subsequently we can use k to interpolate from the Vi k15,2 State vector and transform the interpolated value
to form V45 . vector by

v _ Cr,kls,z _ Ct,k|S.Z Fs,t _ Fs,t v
T,k|s,z — - - t
Fs,‘r Fs,t Fs,‘c Fs,‘c

(250)

k|s.z

If the dividend is proportional, we must have spot price X, = X;(1 — n,) for a rate n, and hence

forward price F; ; = Fg (1 — n,) before and after the dividend fall. Because we can show that

! Strictly speaking, a forward on time T spot is an expectation of the spot under T-forward measure, i.e. F,+ = E{ [X7].
However since the interest rate is assumed deterministic, the T-forward measure coincides with the risk neutral
measure.
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L _E-KY (- (%= Foee)" | Eo| (X = Fipe)'| ,
whlsz = E; B For(1—n¢) B Fg:  bklsz

(251)

the state vector remains unchanged before and after the issuance of dividend.

With continuous dividend gq;, the realignment of state vector is unnecessary because there is no
discontinuity in equity spot.
11.4. Backward PDE

Again we assume the spot follows the SDE (122). Without loss of generality, let’s denote G (X7|K)
an arbitrary payoff function with parameter K, whose value is contingent on X, at maturity T. One
example of such function would be the payoff function of a call option: G(X;|K) = (X; — K)*. Let
Ui x be the expectation of the function G (X7|K) at time ¢t with spatial variable x = X, which can be

written as
Uprinie = E[G(Xr K1t x] = f COIKDry ey (252)
R

where the transition probability pr ., follows the Kolmogorov backward equation (20)

apTyltx apTyltx Ct,?xxzaszyltx
Pryiex _ ylex | St 22 253
ot M Tox T2 T ox (%23)

In turn, we can derive the backward PDE for the U, ,r x such that

ou d d z x?0?
t,x|T,K _ ] G(le) pT,ylt,x dy _ _j G(yIK) <'utx pT,ylt,x + Ctx pT,yIt,x) dy
R R

dat ot 0x 2 O0x?
(254)
— aUt,x|T,1< _ §t2,xx2 aZUt,xIT,K
He 0x 2 0x?2
with terminal condition
Urxirk = G(x|K) (255)

11.4.1. PDE in Centered Log-spot

Assuming the spatial variable is z, = log(x/F; ) at time t, we may write U, , 7, in the (¢, z)-

plane equivalent to U, ,r . The backward PDE (254) can then be transformed into
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aUt,le,k _ _ﬁ azUt,le,k _ aUt,le,k
ot 2 0z2 0z

with terminal condition
Urzirk =G (Fs,Teles,Tek)

by using the following partial derivatives derived from the chain rule

% _ l % — _ aUL“,xlT,K _ aUt,le,k + aUt,ZIT,k % _ aUt,ZIT,k . aUI:,ZIT,k
ox _x ot M ot ot 9z ot ac | M o
aU!:,xlT,K _ aUt,zIT,k % _ laUt,Z|T,k azUt,xlT,K _ i azUt,le,k . aUi:,le,k
0x dz Odx «x 0z dx? x2 0z2 0z
11.4.1.1. Treatment of Deterministic Dividends

With fixed dividend 8;, we have
Xe=X—6, and Fso = Fst — 6
The no arbitrage condition shows that for the spatial grid z
Utzir ke = [E[G(XTlFs,Tek)lt' Fs,tez] = E[G(XHFs,Tek)lT' Fsre” — ‘9t]

z
Fs'te - 9t

= E[G(X7|Fsre¥)
F+

T, FS,TeZ] = Ur stk where Z = log

(256)

(257)

(258)

(259)

(260)

It is likely that if zis sufficiently small (e.g., at lower boundary of spatial grid) we may end up with

Fg.e? — 6, < 0, which makes the Z not well defined. A solution is to floor it to a small positive number,

e.g., taking max(10‘1°, Fge? — Ht). This is valid because equity spot must be positive and the U, 27 x

flattens as Z goes to negative infinity. After the special treatment, we can use the Z to interpolate from the

U: 7|1 k. State vector and convert the interpolated value into vector U, ;7 .

With proportional dividend, the conclusion drawn for forward PDE still applies here and the state

vector remains unchanged before and after the dividend fall. With continuous dividend, the realignment

of state vector is unnecessary because there is no discontinuity in equity spot.
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11.4.1.2. Vanilla Call

Due to the duality between the forward and backward PDE, it is evident that vanilla calls (or puts)
must admit the identity: Us ;7 = Vr|szFs, Where Us 7, is the undiscounted call solved from
backward PDE (256) and Vr s . the normalized undiscounted call solved from forward PDE (243). This
relationship can be used to check the correctness of implementation of the numerical engines of forward
and backward PDE.

11.4.2. PDE in Log-spot

For pricing some exotic options, e.g., barrier options, it is more convenient to use log-spot z =
log x as the spatial variable. Similarly we can define # = log K. Let us denote the (discounted) price of a
derivative product by
Qezirp = PerUszire = E[DerG(Xrlef)|t, e?] (261)
By taking into account the discount factor, it must follow the following backward PDE

Q¢ 71T, U 71,0
2Tk + P —2T
at tQt,ZIT,/& t,T at

10Uizirp Sz 1 (0%Uigre OUrgre
=1Q¢zir6 + Per <_.utx;T T 2 922 0z (262)

2 32 2
_ Stz 0°QeziT,0 Ctz 0Q¢t s
T —(')Zz + R — Mt —(')z + 1 Qt im0

where the partial derivatives below have been used

a_Z _ 1 a_Z —0 aUt,xlT,K _ aUt,le,/% aUlf,zIT,/ea_Z _ aUt,zIT,/e
ox x’ ot ’ ot ot dz Ot ot

OUtxirk _ OUtsir,s O 4 OUtsirr 02 _ 10Utqire
ox ot Ox oz 0x x 0z

(263)

0?Upxirx _ 0 (laUt,ZIT,la) __10Usre 10%Upqr,p 0t | 10%Upyrs 07

9x2  dox\x 0z x2 0z x 0z0t 0x x 032 0x

x2

_ i azUt‘z|T/¢ _ Ut 2174
072 0z
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11.4.2.1. Treatment of Deterministic Dividends

With fixed dividend 6,, the no arbitrage condition states that
Qtzite = [E[Dt'TG(XT|ek)|t,eZ] = IE[DT,TG(XTIek)h,eZ — Ht]
(264)
= E[D.rG(Xrle*)|r,e?] = Qrzrr  where 2 =log(e® —6,)
Again, extremely small z may result in £ that is not well defined, we may floor the difference e® — 6, to
a small positive number, e.g., taking max(10~'°, e® — 6,). The vector Q, ,r 4 can then be interpolated

from the known Q7.4 using the 2.

With proportional dividend n,, again the no arbitrage condition shows

QtziTe = [E[Dt,TG(XT|ek)|t,ez] = E[DT,TG(XH@k)lT'eZ(l - Ut)]
(265)
= IE[DT,TG(XTIe")h, eé] = Qrsim.e where z =2z+log(1—n.)
The vector Q¢ .7, can be interpolated from the Q, ,r 4 using the 2.
With continuous dividend, the realignment of state vector is unnecessary because there is no
discontinuity in equity spot.
11.5. Local Volatility Surface
This section is devoted to discussing the construction of local volatility surface ¢(t, k). There are
various ways to define the local volatility surface. The one that we would like to discuss is a 2-D function
that is piecewise constant in maturity ¢t and piecewise linear in log-moneyness k = log(K/Fs,) (or in

delta for FX). The volatility surface comprises a series of volatility smiles o; (k) for maturity s < t; <

- <tj < - <ty =T. At each maturity t;, volatility smile o;(k) is constructed by linear interpolation
between log-moneyness pillars k; = log(Ki/Fslt) for strikes K; < <K; <-- <K, and flat
extrapolation where the volatility values at k; and k,, are used for all k < k; and k > k,,, respectively.

The smile o;(k) constructed at ¢; is assumed to remain constant over time for any t between the two

adjacent maturities t;_; < t < t;.
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Calibration of the local volatility surface is conducted in a bootstrapping manner starting from the
shortest maturity t;. It is done by solving the forward PDE such that the local volatility surface is able to

reproduce the vanilla call prices at the prescribed log-moneyness pillars k; for each of the maturities ¢;.

The PDE can be solved using finite difference method! on a uniform grid defined on log-moneyness k
that extends to +5 standard deviations of the underlying spot. The choice of boundary condition has little
impact to the solutions of vanilla option prices because at +5 standard deviations the transition probability
becomes negligibly small. Our application uses linearity boundary condition for its simplicity. To allow a
higher tolerance to market data input and smoother calibration process, the objective function may include
a penalty term to suppress unfavorable concavity of a local volatility smile. Again, there can be many
ways to define the objective function as well as the penalty function. In this essay, we will only focus on

the simplest objective (e.g., at maturity t;): the least square minimization of vanilla call prices

n
az}g(r’g;n; (Uf,zsltj,ki - Uﬁ%},lki)z (266)
where Us ;1 is the normalized undiscounted call price defined in (242), the superscript “BS” denotes the
theoretical price by Black-Scholes model and the “PDE” denotes the numerical value by forward PDE.
Note that without a penalty term, the minimization can lead to an exact solution given a proper? implied
volatility surface.
11.6. Barrier Option Pricing
In contrast to the calibration, the pricing of a barrier option relies on the backward PDE (262) in
line with proper terminal condition (i.e., payoff function) and boundary conditions defined by the

characteristics of the barrier option. Barrier options often demand a spatial grid defined on log-spot z =

log X;, which allows an easier fit of time-invariant barrier (e.g., with European or American type of

L A brief introduction to finite difference method can be found in my notes “Introduction to Interest Rate Models”,
which can be downloaded from https://modelmania.github.io/main/
2 A proper implied volatility surface should well behave and admit no arbitrage
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observation window) into the domain. For example, an up-and-out barrier option would be priced on a
domain with upper bound at the barrier level b where Dirichlet boundary condition is applied (the lower

bound and its boundary condition remain the same as for vanilla options).
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