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1. INTRODUCTION 

SABR model is a CEV model augmented by stochastic volatility that assumes the forward rate 

evolves under the associated forward (terminal) measure ℚ𝑇  

𝑑𝐹𝑡,𝑇 = 𝜍𝑡𝐹𝑡,𝑇
𝛽
𝑑𝑊𝑡, 𝑑𝜍𝑡 = 𝜈𝜍𝑡𝑑𝑍𝑡 , 𝑑𝑊𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡 (1) 

for time 𝑡 between initial time 𝑠 and maturity 𝑇. The 𝐹𝑡,𝑇  is a forward rate process with initial value  

𝐹𝑠,𝑇 = 𝑓 . The 𝜍𝑡  is the stochastic volatility with initial value 𝜍𝑠 = 𝛼 . The parameter 𝛼  cannot be 

observed from the market, however it can be derived analytically from the at-the-money implied 

volatility as we shall see in due course. The factor 𝜈 is known as the volatility of volatility, which 

adjusts the degree of volatility clustering in time. The parameter 𝛽 ∈ [0,1] controls the relationship 

between the forward rate and the at-the-money volatility. A 𝛽 < 1 (“non-lognormal” case) leads to 

skews in the implied volatilities. In the case of 𝛽 ≈ 1, if the market were to move up or down, the level 

of the at-the-money volatility would not be significantly affected, whereas when 𝛽 < 1 the volatility 

increases as forward rate falls (i.e. volatility and forward move in opposite direction). The closer to 0 the 

more pronounced would be this effect. The correlation parameter 𝜌 plays a similar role as the 𝛽 does. It 

defines how the market moves in sync with the volatility dynamics. The model parameters 𝜈, 𝛼, 𝛽 and 𝜌 

are all assumed to be deterministic and time invariant.  

2. ASYMPTOTIC SOLUTION BY HAGAN ET AL. 

Using singular perturbation techniques, Hagan et al. [1] provide a closed form asymptotic 

solution (up to the accuracy of a series expansion) for prices of vanilla instruments. The value of a 

vanilla option under the SABR model is given by the appropriate Black formula provided that the 

correct Black implied volatility is used. Given the forward initial value 𝐹𝑠,𝑇 = 𝑓 and the expiry time 𝜏 =

𝑇 − 𝑠, the Black implied volatility 𝜎 can be derived as a function of strike price 𝐾 from a given set of 

SABR parameters 𝛼, 𝜈, 𝛽 and 𝜌 by 

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + 𝑂(𝜏
2))    where (2) 
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𝐼0 =
𝛼

𝑝 (1 +
(1 − 𝛽)2𝑞2

24 +
(1 − 𝛽)4𝑞4

1920 +⋯)
∙
𝑧

𝜆
=
𝜈𝑞

𝜆
∙

1

1 +
(1 − 𝛽)2𝑞2

24 +
(1 − 𝛽)4𝑞4

1920 +⋯
 

𝐼1 =
(1 − 𝛽)2𝛼2

24𝑝2
+
𝜌𝛽𝜈𝛼

4𝑝
+
(2 − 3𝜌2)𝜈2

24
 

𝑝 = (𝑓𝐾)
1−𝛽
2 , 𝑞 = log

𝑓

𝐾
, 𝑧 =

𝜈𝑝𝑞

𝛼
, 𝜆 = log

√1 − 2𝜌𝑧 + 𝑧2 + 𝑧 − 𝜌

1 − 𝜌
 

When 𝜈 → 0, the (2) reduces to give the at-the-money implied volatility 

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + 𝑂(𝜏
2))    where 

𝐼0 =
𝛼

𝑝 (1 +
(1 − 𝛽)2𝑞2

24 +
(1 − 𝛽)4𝑞4

1920 +⋯)
∙
𝑧

𝜆
=
𝜈𝑞

𝜆
∙

1

1 +
(1 − 𝛽)2𝑞2

24 +
(1 − 𝛽)4𝑞4

1920 +⋯
 

𝐼1 =
(1 − 𝛽)2𝛼2

24𝑝2
 

𝑝 = (𝑓𝐾)
1−𝛽
2 , 𝑞 = log

𝑓

𝐾
, 𝑧 =

𝜈𝑝𝑞

𝛼
, 𝜆 = log

√1 − 2𝜌𝑧 + 𝑧2 + 𝑧 − 𝜌

1 − 𝜌
 

(3) 

When 𝐾 → 𝑓, the (2) reduces to give the at-the-money implied volatility 

𝜎𝑓 = 𝜎𝐵(𝑓, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) =
𝛼

𝑓1−𝛽
(1 + (

(1 − 𝛽)2𝛼2

24𝑓2−2𝛽
+
𝜌𝛽𝜈𝛼

4𝑓1−𝛽
+
(2 − 3𝜌2)𝜈2

24
) 𝜏 + ⋯) (4) 

When 𝛽 → 1, we have the implied volatility in lognormal SABR 

lim
𝛽→1

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + ⋯ )    where 

𝐼0 =
𝜈𝑞

𝜆
, 𝐼1 =

𝜌𝜈𝛼

4
+
(2 − 3𝜌2)𝜈2

24
  

(5) 

using the limit lim
𝛽→1

𝑝 = 1. 

The (4) shows that there exists a relationship 

log 𝜎𝑓 = log𝛼 − (1 − 𝛽) log 𝑓 +⋯ (6) 

It indicates that the value of 𝛽 can be estimated from a log-log regression of 𝜎𝑓 and 𝑓 with historical 

data by ignoring terms involving 𝜏. Alternatively, since the parameters 𝛽 and 𝜌 in SABR model control 
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the distribution function in similar ways (i.e. both control the skewness of the distribution), the 

redundancy between the two parameters allows one to calibrate the model by fixing 𝛽 to an assumption 

(e.g. 𝛽 = 0.5). The decision is often made on the basis of market experience. The remaining parameters 

𝛼, 𝜈 and 𝜌 have different effects on the volatility curve. The parameter 𝛼 mainly controls the overall 

magnitude of the curve, the 𝜈 controls how much smile (i.e. convexity) the curve exhibits and the 𝜌 

controls the curve’s skew. 

As shown in (4) the parameter 𝛼  has a functional form with the at-the-money volatility 𝜎𝑓 . 

Inverting the equation gives the value of 𝛼 as a root of a cubic equation if the 𝜈 and 𝜌 are known (in 

general, the smallest positive root would be taken if there were three real roots)  

(1 − 𝛽)2𝜏

24𝑓2(1−𝛽)
𝛼3 +

𝜌𝛽𝜈𝜏

4𝑓1−𝛽
𝛼2 + (1 +

(2 − 3𝜌2)𝜈2𝜏

24
)𝛼 − 𝜎𝑓𝑓

1−𝛽 = 0 (7) 

This indicates that in SABR model we only need to calibrate 𝜌 and 𝜈  to implied volatility surface, 

providing that the value of 𝛽  is prescribed and the at-the-money implied volatility 𝜎𝑓  is given. The 

calibration is performed at each maturity of the volatility surface by minimizing the objective function 

defined as a sum of squared residuals (or sum of vega weighted squared residuals) 

argmin
𝜈,𝜌

∑(𝜎𝑀𝐾𝑇(𝐾𝑖; 𝜏) − 𝜎𝐵(𝐾𝑖; 𝜏, 𝑓, 𝜈, 𝛼, 𝛽, 𝜌))
2

𝑁

𝑖=1

 (8) 

Various nonlinear optimization routines can be used to carry out the calibration, for example, 

Levenberg-Marquardt method or Nelder-Mead simplex method. 

3. OBLOJ’S FORMULA: CORRECTION TO HAGAN ET AL. SOLUTION 

The general formula of the implied Black volatility for the SABR model is given by (A.65) in 

[1], where the general form of 𝜁 can be found in (A.57c) in [1]. When assuming CEV model for the 

forward process (i.e. 𝐶(𝐹) = 𝐹𝛽), the 𝜁 takes the form  
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𝜁 =
𝜈

𝛼
∫

𝑑𝐹

𝐶(𝐹)

𝑓

𝐾

=
𝜈

𝛼
∫

𝑑𝐹

𝐹𝛽

𝑓

𝐾

=
𝜈

𝛼
𝜂, 𝜂 = ∫

𝑑𝐹

𝐹𝛽

𝑓

𝐾

=

{
 

 
𝑓1−𝛽 − 𝐾1−𝛽

1 − 𝛽
, if 𝛽 < 1 

log
𝑓

𝐾
,                        if 𝛽 = 1

 (9) 

By expanding, we have 

𝑒𝑥 =∑
𝑥𝑛

𝑛!

∞

𝑛=0

⟹ 𝑒𝑦 − 𝑒−𝑦 = 2𝑦 (1 +
𝑦2

3!
+
𝑦4

5!
+ ⋯) 

⟹ 𝑝(𝑒
1−𝛽
2
𝑞 − 𝑒−

1−𝛽
2
𝑞) = 𝑝(1 − 𝛽)𝑞 (1 +

(1 − 𝛽)2𝑞2

24
+
(1 − 𝛽)4𝑞4

1920
+⋯) ,

for    𝑦 =
1 − 𝛽

2
𝑞, 𝑝 = (𝑓𝐾)

1−𝛽
2 , 𝑞 = log

𝑓

𝐾
 

⟹ 𝑓1−𝛽 − 𝐾1−𝛽 = (1 − 𝛽)𝑝𝑞 (1 +
(1 − 𝛽)2𝑞2

24
+
(1 − 𝛽)4𝑞4

1920
+⋯) 

⟹ 𝜂 = 𝑝𝑞 (1 +
(1 − 𝛽)2𝑞2

24
+
(1 − 𝛽)4𝑞4

1920
+⋯) 

(10) 

Thus 𝜁 can be written as 

𝜁 =
𝜈

𝛼
𝜂 =

𝜈𝑝𝑞

𝛼
(1 +

(1 − 𝛽)2𝑞2

24
+
(1 − 𝛽)4𝑞4

1920
+⋯) (11) 

Clearly the expression of 𝑧 used in (2) is just an approximation of 𝜁 in (11) truncating all higher order 

terms of 𝑞. This leads to a correction to the original Hagan et al. solution proposed by Obloj [2] in 2008, 

where Obloj uses 𝜁 =
𝜈

𝛼
𝜂 in (9) in the general approximation formula (A.65) in [1]. This leads to the 

improved implied volatility formula 

𝜎𝐵(𝐾; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + ⋯ )    where 

𝐼0 =
𝛼𝑞

𝜂
∙
𝜁

𝜆
=
𝜈𝑞

𝜆
, 𝐼1 =

(1 − 𝛽)2𝛼2

24𝑝2
+
𝜌𝛽𝜈𝛼

4𝑝
+
(2 − 3𝜌2)𝜈2

24
 

𝑝 = (𝑓𝐾)
1−𝛽
2 , 𝑞 = log

𝑓

𝐾
, 𝜁 =

𝜈

𝛼
𝜂, 𝜆 = log

√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌

1 − 𝜌
 

(12) 
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𝜂 = ∫
𝑑𝐹

𝐹𝛽

𝑓

𝐾

=

{
 

 
𝑓1−𝛽 − 𝐾1−𝛽

1 − 𝛽
, if 𝛽 < 1 

log
𝑓

𝐾
,                       if 𝛽 = 1

 

Two asymptotic cases must be addressed. Firstly, when 𝐾 → 𝑓, we get the at-the-money volatility  

lim
𝐾→𝑓

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) =
𝛼

𝑓1−𝛽
(1 + (

(1 − 𝛽)2𝛼2

24𝑓2−2𝛽
+
𝜌𝛽𝜈𝛼

4𝑓1−𝛽
+
(2 − 3𝜌2)𝜈2

24
) 𝜏 + ⋯) (13) 

with the limits for 𝐼0 (derived from the series expansion in (10)) 

lim
𝐾→𝑓

𝜂

𝑞
= lim

𝐾→𝑓

𝑓1−𝛽 − 𝐾1−𝛽

(1 − 𝛽)𝑞
= lim

𝐾→𝑓

−(1 − 𝛽)𝐾−𝛽

−(1 − 𝛽)
1
𝐾 

= 𝑓1−𝛽 , lim
𝐾→𝑓

𝜁

𝜆
= 1 

⟹ lim
𝐾→𝑓

𝐼0 = lim
𝐾→𝑓

𝛼 ∙
𝑞

𝜂
∙
𝜁

𝜆
=

𝛼

𝑓1−𝛽
 

(14) 

Secondly, when 𝛽 → 1, we have the implied volatility in lognormal SABR 

lim
𝛽→1

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + ⋯ )    where 

𝐼0 =
𝜈𝑞

𝜆
, 𝐼1 =

𝜌𝜈𝛼

4
+
(2 − 3𝜌2)𝜈2

24
  

(15) 

with the limit for 𝜁  

lim
𝛽→1

𝑓1−𝛽 − 𝐾1−𝛽

1 − 𝛽
= lim

𝛽→1

−𝑓1−𝛽 log 𝑓 + 𝐾1−𝛽 log𝐾

−1
= log

𝑓

𝐾
= 𝑞 ⟹ lim

𝛽→1
𝜁 =

𝜈

𝛼
𝑞 (16) 

4. PAULOT’S FORMULA: FIRST ORDER APPROXIMATION 

Paulot provides a first order approximation formula [3] for the implied Black volatility in the 

SABR model 

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + ⋯ )    where 

𝐼0 =
𝜈

𝜆
𝑞, 𝐼1 = −

𝜈2

𝜆2
(𝐶 + log

𝐼0√𝑓𝐾

𝜈
) 

𝑞 = log
𝑓

𝐾
, 𝜁 =

𝜈

𝛼
∙ ∫

𝑑𝐹

𝐹𝛽

𝑓

𝐾

=
𝜈

𝛼
∙ {

𝑓1−𝛽 − 𝐾1−𝛽

1 − 𝛽
, if 𝛽 < 1 

𝑞,                               if 𝛽 = 1

 

(17) 



 
Changwei Xiong, August 2022   https://modelmania.github.io/main/                    

7 

 

𝜆 = log
√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌

1 − 𝜌
 

𝐶 = −
1

2
log

𝛼𝑉𝑓𝛽𝐾𝛽

𝜈
+

{
 
 

 
 −

𝛽𝜌(𝐺(𝑡2) − 𝐺(𝑡1))

(1 − 𝛽)√1 − 𝜌2
,                if 𝛽 < 1 

𝜌

2(1 − 𝜌2)
(
𝛼

 𝜈
− 𝑉 − 𝜌𝑞) , if 𝛽 = 1

 

𝑉 =
𝛼

𝜈
√1 − 2𝜌𝜁 + 𝜁2 

𝑎 = 𝑓1−𝛽 , 𝑏 = (1 − 𝛽)√1 − 𝜌2, 𝜉 = (𝑎 + 𝑏𝑋)2 − (1 − 𝛽)2𝑅2 

𝐺(𝑡) = tan−1 𝑡 +

{
 
 
 

 
 
 −

𝑎 + 𝑏𝑋

√𝜉
tan−1

(1 − 𝛽)𝜌𝑅 + 𝑡(𝑎 + 𝑏(𝑋 − 𝑅))

√𝜉
, if 𝜉 > 0 

𝑎 + 𝑏𝑋

(1 − 𝛽)𝜌𝑅 + 𝑡(𝑎 + 𝑏(𝑋 − 𝑅))
,                                      if 𝜉 = 0

−
𝑎 + 𝑏𝑋

√−𝜉
tanh̃−1

(1 − 𝛽)𝜌𝑅 + 𝑡(𝑎 + 𝑏(𝑋 − 𝑅))

√−𝜉
,      if 𝜉 < 0

 

tanh̃−1(𝑡) =
1

2
log |

1 + 𝑡

1 − 𝑡
| 

𝑥1 = −
𝜌𝛼

𝜈√1 − 𝜌2
, 𝑥2 = −

𝜁𝛼
𝜈 + 𝜌𝑉

√1 − 𝜌2
, 𝑦1 =

𝛼

𝜈
, 𝑦2 = 𝑉 

𝑡𝑖 = √
𝑅 − 𝑥𝑖 + 𝑋

𝑅 + 𝑥𝑖 − 𝑋
, 𝑋 =

𝑥2
2 − 𝑥1

2 + 𝑦2
2 − 𝑦1

2

2(𝑥2 − 𝑥1)
, 𝑅 = √𝑦1

2 + (𝑥1 − 𝑋)2 

 
Note that the 𝜆 has a different expression than the original Paulot’s formula (see Eq. 32 in [3]), however 

as shown below they are equivalent 

− log
√𝛼2 + 2𝜌𝛼𝜈𝑝 + 𝜈2𝑝2 + 𝜌𝛼 + 𝑝𝜈

(1 + 𝜌)𝛼
 

= log
(1 + 𝜌)𝛼

√𝛼2 + 2𝜌𝛼𝜈𝑝 + 𝜈2𝑝2 + 𝜌𝛼 + 𝑝𝜈
∙
√𝛼2 + 2𝜌𝛼𝜈𝑝 + 𝜈2𝑝2 − 𝜌𝛼 − 𝑝𝜈

√𝛼2 + 2𝜌𝛼𝜈𝑝 + 𝜈2𝑝2 − 𝜌𝛼 − 𝑝𝜈
 

= log
√𝛼2 + 2𝜌𝛼𝜈𝑝 + 𝜈2𝑝2 − 𝜌𝛼 − 𝑝𝜈

(1 − 𝜌2)𝛼2
(1 + 𝜌)𝛼 = log

√1 + 2𝜌
𝜈𝑝
𝛼 +

𝜈2𝑝2

𝛼2
− 𝜌 −

𝑝𝜈
𝛼

1 − 𝜌
 

(18) 
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= log
√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌

1 − 𝜌
= 𝜆 

 
where we define 

𝑝 = ∫
𝑑𝐹

𝐹𝛽

𝐾

𝑓

    and thus    𝜁 =
𝜈

𝛼
∙ ∫

𝑑𝐹

𝐹𝛽

𝑓

𝐾

= −
𝜈

𝛼
𝑝 (19) 

For the asymptotic case when 𝛽 → 1, we have 

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) = 𝐼0(1 + 𝐼1𝜏 + ⋯ )    where 

𝐼0 =
𝜈𝑞

𝜆
, 𝐼1 = −

𝜈2

𝜆2
(𝐶 + log

𝐼0√𝑓𝐾

𝜈
) 

𝑞 = log
𝑓

𝐾
, 𝜁 =

𝜈𝑞

𝛼
, 𝜆 = log

√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌

1 − 𝜌
 

𝐶 = −
1

2
log

𝑓𝐾𝛼𝑉

𝜈
+

𝜌

2(1 − 𝜌2)
(
𝛼

 𝜈
− 𝑉 − 𝜌𝑞) 

𝑉 =
𝛼

𝜈
√1 − 2𝜌𝜁 + 𝜁2 

(20) 

When 𝐾 → 𝑓, it appears that the asymptotic approximation is equal to the classic formula by Hagan et al 

[4], that is 

lim
𝐾→𝑓

𝜎𝐵(𝐾, 𝜏; 𝛼, 𝜈, 𝛽, 𝜌) =
𝛼

𝑓1−𝛽
(1 + (

(1 − 𝛽)2𝛼2

24𝑓2−2𝛽
+
𝜌𝛽𝜈𝛼

4𝑓1−𝛽
+
(2 − 3𝜌2)𝜈2

24
) 𝜏 + ⋯) (21) 

This is not surprising as their expansion is in fact an expansion in both maturity and moneyness 

(eventually of order 0 in moneyness). Although the limit for 𝐼1 is not straightforward to obtain, the limit 

for 𝐼0 is easy to derive, using the fact 
𝜕𝜁

𝜕𝐾
= −

𝜈

𝛼
∙ 𝐾−𝛽 
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lim
𝐾→𝑓

𝐼0 = lim
𝐾→𝑓

𝜈 log
𝑓
𝐾

log
√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌

1 − 𝜌

= lim
𝐾→𝑓

−
𝜈
𝐾

1 − 𝜌

√1 − 2𝜌𝜁 + 𝜁2 + 𝜁 − 𝜌
∙

−2𝜌 + 2𝜁

2√1 − 2𝜌𝜁 + 𝜁2
+ 1

1 − 𝜌 ∙
𝜕𝜁
𝜕𝐾

= lim
𝐾→𝑓

−
𝜈
𝐾
𝜕𝜁
𝜕𝐾

=
𝛼

𝑓1−𝛽
 

(22) 

Paulot also provides a second-order approximation. Although it is accurate in a wider region of 

strike prices, it requires numerical integrations for the second-order term, which defeats the purpose as 

an analytic approximation. 
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