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ABSTRACT 

This report summarizes Meucci’s methodology [ 1 ] to analyze factors and sources of 

portfolio risk and therefore the risk diversification strategies. This methodology primarily 

focuses on analyzing the uncorrelated portfolio risk factors under various constraints for 

portfolio construction and its reallocation. Standard principal component analysis and 

conditional principal component analysis are performed to build the diversification distribution 

given the applied constraints. Effective number of bets, which is the exponential of the entropy 

of the diversification distribution, provides a powerful measure for the level of diversification in 

a portfolio. Finally the mean-diversification efficient frontier is introduced, which maximizes the 

diversification given an expected return.     
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1. Introduction 

Diversification is an important technique for reducing investment risk. It has been widely 

studied and applied to manage the systemic and non-systemic risks in portfolios. However the 

efficiency of diversification is heavily affected by correlations of underlying assets of portfolios. 

Careful analyses of the correlation structure and risk factors would lead to a deeper 

understanding of the risk sources and therefore a better diversification schemes and risk 

reallocation strategies.   

Before looking into the theory, let’s introduce a few simple definitions. Consider a 

portfolio consisting of 𝑁𝑁 securities. The total return of the portfolio is defined as 𝑅𝑅𝑤𝑤 ≡ 𝑤𝑤𝑇𝑇𝑅𝑅, 

where the 𝑅𝑅 is a column vector denoting the returns of the 𝑁𝑁 securities within a given investment 

horizon and the vector 𝑤𝑤 is the capital weights of each security in the portfolio. The risk of the 

portfolio is characterized by the variance of the total return, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑤𝑤) ≡ 𝑤𝑤𝑇𝑇𝛴𝛴𝑤𝑤, where Σ is the 

variance-covariance matrix of security returns. In a fully uncorrelated markets, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑤𝑤) =

∑ 𝑤𝑤𝑖𝑖2 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑖𝑖)𝑁𝑁
𝑖𝑖=1 , which implies that maximum diversification can be achieved through equal 

variance-adjusted weights. The real markets are usually correlated. The risk of portfolio can be 

decomposed into parts and then explained by certain risk factors. Principal Component Analysis 

(PCA) is one of the common tools used to perform the risk decomposition and analyze the risk 

factors and contribution to the portfolio total risk. In a mathematical terminology, PCA of the 

risk matrix is equivalent to an orthogonal linear transformation that transforms the risk data to a 

new coordinate system such that the largest variance by any projection of the data comes to lie 

on the first coordinate, also known as the first principle component, and the second largest 

variance on the second, and so on. This report at first summarizes the PCA methodology and 
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then discusses how this method can be applied to perform portfolio risk analyses and 

diversifications subject to various constraints.  

2. Analysis of Portfolio Risk 

2.1 Classical Principal Component Analysis 

In modern portfolio theory, factor analysis is a very important concept. It basically states 

that the variability among the observed variables (e.g., prices of equities in a portfolio) can be 

described in terms of fewer unobserved variables known as factors. The observed variables are 

usually modeled as linear combinations of the common factors, in addition to an unaccounted 

error term. Factor analysis can be performed through, but not limited to, PCA method. Briefly 

speaking, PCA is a mathematical procedure performs, in our case, a variance-maximizing 

rotation of the variable space, which takes into account all variability in the variables. The idea is 

to transforms a set of possibly correlated random variables into a set of uncorrelated variables 

which are known as principal components. The first principal component accounts for as much 

of the variance in the data as possible, and each succeeding component accounts for as much of 

the remaining variance as possible. 

The same idea applies to portfolio risks. The risk of portfolio can be explained through a 

set of uncorrelated factors. PCA is the process for factoring out these uncorrelated risk sources: 

𝛴𝛴 ≡ 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇 ⟹ 𝐸𝐸 ≡ 𝐸𝐸𝑇𝑇𝛴𝛴𝐸𝐸 (1) 

where 𝐸𝐸 ≡ diag(𝜆𝜆12,⋯ , 𝜆𝜆𝑁𝑁2 ) and 𝐸𝐸 ≡ (𝑒𝑒1,⋯ , 𝑒𝑒𝑁𝑁) are the eigenvalue matrix and the eigenvector 

matrix, respectively. Entries on the main diagonal of Λ are eigenvalues in a descending order, 

and columns of E are the respective eigenvectors. Given that 𝛴𝛴 is a symmetric positive definite 

matrix, the eigenvector matrix 𝐸𝐸  is orthonormal, which performs purely a rotation 
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transformation. The eigenvectors define a set of N uncorrelated portfolios, called principal 

portfolios, whose returns 𝑅𝑅� ≡ 𝐸𝐸−1𝑅𝑅  are decreasingly responsible for the randomness in the 

market. The variances in returns of these uncorrelated principal portfolios are characterized by 

the corresponding eigenvalues. The weight vector 𝑤𝑤 in terms of the underlying securities can be 

treated as a linear combination of the uncorrelated principal portfolios, 

𝑤𝑤 ≡ 𝐸𝐸𝑤𝑤� ⟹ 𝑤𝑤� ≡ 𝐸𝐸−1𝑤𝑤 = 𝐸𝐸𝑇𝑇𝑤𝑤 (2) 

Here we introduce the variance concentration curve as 

𝑣𝑣�𝑛𝑛 ≡ 𝑤𝑤�𝑛𝑛2𝜆𝜆𝑛𝑛2  ,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (3) 

and hence the total variance (i.e. risk) is 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑤𝑤) ≡ 𝑤𝑤𝑇𝑇𝛴𝛴𝑤𝑤 = 𝑤𝑤𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑤𝑤 = 𝑤𝑤�𝑇𝑇𝐸𝐸𝑤𝑤� = � 𝑤𝑤�𝑛𝑛2𝜆𝜆𝑛𝑛2
𝑁𝑁

1
= � 𝑣𝑣�𝑛𝑛

𝑁𝑁

1
 (4) 

The entry 𝑣𝑣�𝑛𝑛 represents the variance due to the n-th principal portfolio.  

In terms of the variance concentration curve, we define two more terms. Firstly, the 

volatility concentration curve 

𝑠𝑠𝑛𝑛 ≡
𝑤𝑤�𝑛𝑛2𝜆𝜆𝑛𝑛2

𝑆𝑆𝑆𝑆(𝑅𝑅𝑤𝑤)
=

𝑣𝑣�𝑛𝑛
�∑ 𝑣𝑣�𝑛𝑛𝑁𝑁

1
,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (5) 

which represents a normalized decomposition of the variance concentration and describes the 

decomposition of volatility (or tracking error) into the contributions from each principal 

portfolio. Secondly, the diversification distribution,   

𝑝𝑝𝑛𝑛 ≡
𝑤𝑤�𝑛𝑛2𝜆𝜆𝑛𝑛2

𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑤𝑤)
=

𝑣𝑣�𝑛𝑛
∑ 𝑣𝑣�𝑛𝑛𝑁𝑁
1

,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (6) 

which can be treated not only as a normalized variance concentration curve, but also a vector of 

R-squares from regression of total portfolio return on the respective principal portfolios.  In other 
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words, the diversification distribution describes how much percentage of total variance can be 

explained by each of the principal portfolios. 

 Simply replacing the portfolio weight 𝑤𝑤  with 𝑤𝑤 − 𝑏𝑏 , where 𝑏𝑏  is a benchmark weight 

vector, the same analysis methodology can be applied to an active portfolio management against 

a benchmark. In this case, volatility concentration curve becomes tracking error concentration 

curve and diversification curve becomes the relative diversification distribution. 

2.2 Conditional Principal Component Analysis 

 The conditional risk management arises from certain constraints, such that, for example, 

the risk of portfolio due to the market exposure cannot be diversified. If the market is the leading 

source of risk, the overall diversification level might be low, however by conditioning on this 

factor, the remaining risk of the portfolio may still be well diversified through analysis of the 

diversification distribution for the remaining factors. More in general, portfolios can be subject 

to a number of constraints. These constraints define a hyper-plane, a subset in the complete 

portfolio space where rebalancing is feasible (i.e. Rebalancing of a portfolio can only be 

performed on this hyper-plane). This constraint is defined through an implicit equation 

𝐴𝐴∆𝑤𝑤 ≡ 0 (7) 

where 𝐴𝐴 is a conformable 𝐾𝐾 × 𝑁𝑁 matrix each row of which represents a constraint. For example, 

in the case of a budget constraint for portfolios, 𝟏𝟏𝑻𝑻𝑤𝑤 ≡ 1. The constraint is defined as 𝟏𝟏𝑻𝑻∆𝑤𝑤 ≡ 0 

for rebalancing. Therefore the corresponding row in 𝐴𝐴 is a vector of ones. It should be noted that 

the constraints defined through matrix 𝐴𝐴 are imposed only on rebalancing, ∆𝑤𝑤. In other words, 

given an existing portfolio, these constraints define which rebalancing is allowed and which is 

not. Portfolio manager always wants to manage the risk of portfolio in a most efficient way, in 
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order to minimize transaction costs and market impact. In this case, diversification distribution 

conditioning on these constraints provides a clear picture of the diversification structure of a 

portfolio when only specific rebalancing directions are allowed. The remarkable difference 

between the standard and the conditional portfolio management is that, given 𝐾𝐾  constraints, 

rebalancing of conditional portfolio can only be achieved on the (𝑁𝑁 − 𝐾𝐾)  dimensional 

unconstrained sub-space. Thus the diversification distribution within the (𝑁𝑁 − 𝐾𝐾) dimensional 

unconstrained sub-space is more interesting to the portfolio manager. Apparently, in this case, 

standard principal portfolios derived from unconditional case are no longer applicable to reflect 

the diversification distribution with constraints. We must decompose the total risk in terms of 

two parts: risk due to 𝐾𝐾 constrained and risk due to (𝑁𝑁 − 𝐾𝐾) unconstrained principal portfolios. 

This is equivalent to first finding unconstrained principal portfolios within the (𝑁𝑁 − 𝐾𝐾) 

dimensional unconstrained sub-space conditioning on the 𝐾𝐾  constraints, then finding the 

remaining constrained principal portfolios in the 𝐾𝐾 dimensional constrained sub-space given the 

just-constructed unconstrained conditional principal portfolios.  

In mathematics, this translates to a recursive definition: 

𝑒𝑒𝑛𝑛 ≡ argmax‖e‖=1{𝑒𝑒𝑇𝑇Σ𝑒𝑒} 

          subject to  �
𝐴𝐴𝑒𝑒 ≡ 0                             
𝑒𝑒𝑇𝑇Σ𝑒𝑒𝑗𝑗 ≡ 0 ∀ existing 𝑒𝑒𝑗𝑗

 

          𝑛𝑛 = 𝐾𝐾 + 1,⋯ ,𝑁𝑁 

          𝑗𝑗 = 𝐾𝐾 + 1,⋯ ,𝑛𝑛 − 1 

(8) 

where 𝑒𝑒𝑗𝑗’s are the eigenvectors computed from preceding steps in the loop. For a general matrix 

𝐴𝐴, the solution 𝑒𝑒𝑛𝑛,   𝑛𝑛 = 𝐾𝐾 + 1,⋯ ,𝑁𝑁  spans the (𝑁𝑁 − 𝐾𝐾) dimensional unconstrained sub-space 

and represents principal portfolios that are mutually uncorrelated and decreasingly contribute to 
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the total variance in the unconstrained sub-space. Once the (𝑁𝑁 − 𝐾𝐾) unconstrained conditional 

principal portfolios are obtained, we follow another recursive procedure to construct the 

constrained principal portfolios:  

𝑒𝑒𝑛𝑛 ≡ argmax‖e‖=1{𝑒𝑒𝑇𝑇Σ𝑒𝑒} 

          subject to 𝑒𝑒𝑇𝑇Σ𝑒𝑒𝑗𝑗 ≡ 0 ∀ existing 𝑒𝑒𝑗𝑗 ,     

          𝑛𝑛 = 1,⋯ ,𝐾𝐾  

          𝑗𝑗 = 1,⋯ ,𝑛𝑛 − 1      and       𝑗𝑗 = 𝐾𝐾 + 1,⋯ ,𝑁𝑁 

(9) 

As usual, these uncorrelated constrained principal portfolios decreasingly contribute to the total 

variance on the constrained 𝐾𝐾 dimensional sub-space. 

In more detail, the two recursive procedures described above can be stated in a more 

general algorithm: 

�̂�𝑒 ≡ argmax‖e‖=1{𝑒𝑒𝑇𝑇Σ𝑒𝑒} 

        subject to  𝐵𝐵𝑒𝑒 ≡ 0    
(10) 

where B  is a conformable matrix. This is an equality constrained quadratic programming 

problem. In particular, for the first procedure defined by equation (8): 

𝐵𝐵 ≡ �

𝐴𝐴
𝑒𝑒𝐾𝐾+1𝑇𝑇 Σ
⋮

𝑒𝑒𝑛𝑛−1𝑇𝑇 Σ

� (11) 

and for the second procedure defined by equation (9), the vector 𝑒𝑒𝑛𝑛,   𝑛𝑛 = 𝐾𝐾 + 1,⋯ ,𝑁𝑁 have been 

computed and known, 
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𝐵𝐵 ≡

⎝

⎜
⎜
⎛

𝑒𝑒1𝑇𝑇Σ
⋮

𝑒𝑒𝑛𝑛−1𝑇𝑇 Σ
𝑒𝑒𝐾𝐾+1𝑇𝑇 Σ
⋮

𝑒𝑒𝑁𝑁𝑇𝑇Σ ⎠

⎟
⎟
⎞

 (12) 

Note that the matrix 𝐵𝐵 is growing as for every step the 𝑒𝑒𝑛𝑛 computed from last step is aggregated 

into it.  

To solve this problem, let’s define the Lagrangian 

ℒ ≡ 𝑒𝑒𝑇𝑇Σ𝑒𝑒 − 𝜆𝜆(𝑒𝑒𝑇𝑇𝑒𝑒 − 1) − 𝛾𝛾𝑇𝑇𝐵𝐵𝑒𝑒 (13) 

where scalar 𝜆𝜆 and vector 𝛾𝛾 are lagrangian multipliers. Its first derivative with respect to 𝑒𝑒 ought 

to be zero, which gives 

𝜕𝜕ℒ
𝜕𝜕𝑒𝑒

= 2Σ𝑒𝑒 − 2𝜆𝜆𝑒𝑒 − 𝐵𝐵𝑇𝑇𝛾𝛾 = 0 (14) 

Multiply B to both sides, we have 

0 = 𝐵𝐵
𝜕𝜕ℒ
𝜕𝜕𝑒𝑒

= 2𝐵𝐵Σ𝑒𝑒 − 2𝜆𝜆𝐵𝐵𝑒𝑒 − 𝐵𝐵𝐵𝐵𝑇𝑇𝛾𝛾 

= 2𝐵𝐵Σ𝑒𝑒 − 𝐵𝐵𝐵𝐵𝑇𝑇𝛾𝛾 

(15) 

hence 

𝛾𝛾 = 2(𝐵𝐵𝐵𝐵𝑇𝑇)−1𝐵𝐵Σ𝑒𝑒 (16) 

And at last, 

0 =
1
2
𝜕𝜕ℒ
𝜕𝜕𝑒𝑒

= Σ𝑒𝑒 − 𝜆𝜆𝑒𝑒 − 𝐵𝐵𝑇𝑇(𝐵𝐵𝐵𝐵𝑇𝑇)−1𝐵𝐵Σ𝑒𝑒 

= [𝐼𝐼 − 𝐵𝐵𝑇𝑇(𝐵𝐵𝐵𝐵𝑇𝑇)−1𝐵𝐵]Σ𝑒𝑒 − 𝜆𝜆𝑒𝑒 

= 𝑃𝑃Σ𝑒𝑒 − 𝜆𝜆𝑒𝑒 

(17) 
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where 𝑃𝑃 ≡ 𝐼𝐼 − 𝐵𝐵𝑇𝑇(𝐵𝐵𝐵𝐵𝑇𝑇)−1𝐵𝐵 and �̂�𝑒 is an eigenvector of 𝑃𝑃Σ. In other words, �̂�𝑒 is the solution of  

the problem �̂�𝑒 ≡ argmax‖e‖=1{𝑒𝑒𝑇𝑇𝑃𝑃Σ𝑒𝑒}, which is a quadratic programming problem without the 

explicit equality constraint 𝐵𝐵𝑒𝑒 ≡ 0.  

Now define another problem 

�̃�𝑒 ≡ argmax‖e‖=1{𝑒𝑒𝑇𝑇𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇𝑒𝑒} (18) 

Since 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇  is symmetric, the eigenvectors of 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇  are orthogonal. It is straightforward to 

verify that the matrix 𝑃𝑃 is symmetric 𝑃𝑃 = 𝑃𝑃𝑇𝑇  and idempotent 𝑃𝑃𝑃𝑃 = 𝑃𝑃. We have 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇�̃�𝑒 = 𝜆𝜆�̃�𝑒 

and 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇𝑃𝑃�̃�𝑒 = 𝑃𝑃𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇�̃�𝑒 = 𝜆𝜆𝑃𝑃�̃�𝑒. Hence 𝑃𝑃�̃�𝑒 is an eigenvector of 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇 and so is �̃�𝑒. This implies 

𝑃𝑃�̃�𝑒 = 𝛿𝛿�̃�𝑒 for a suitable scalar 𝛿𝛿. In addition, we have 𝑃𝑃𝛴𝛴𝑃𝑃�̃�𝑒 = 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇�̃�𝑒 = 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇𝑃𝑃�̃�𝑒 = 𝜆𝜆𝑃𝑃�̃�𝑒, so 𝑃𝑃�̃�𝑒 

is also an eigenvector of 𝑃𝑃𝛴𝛴. This indicates that �̃�𝑒 is an eigenvector of 𝑃𝑃𝛴𝛴 and eventually �̂�𝑒 = �̃�𝑒. 

Instead of finding the eigenvector by matrix 𝑃𝑃𝛴𝛴, we are in favor of the symmetric matrix 𝑃𝑃𝛴𝛴𝑃𝑃𝑇𝑇 

for which the standard PCA method can be used.  

By collecting the resulted conditional principal portfolios in a matrix 𝐸𝐸� ≡ (�̂�𝑒1,⋯ , �̂�𝑒𝑁𝑁), we 

can express the returns covariance in the same format as in the unconditional case,  

𝐸𝐸�Σ𝐸𝐸�𝑇𝑇 = Λ� (19) 

and the same analysis follows. The original weight 𝑤𝑤 in portfolio can be treated as a linear 

combination of the conditional principal portfolios, 

𝑤𝑤�� ≡ 𝐸𝐸�−1𝑤𝑤 (20) 

We then have the conditional variance concentration curve: 

𝑣𝑣��𝑛𝑛 ≡ 𝑤𝑤��𝑛𝑛2�̂�𝜆𝑛𝑛2  ,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (21) 

where the total portfolio variance is 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑅𝑅𝑤𝑤) ≡� 𝑤𝑤��𝑛𝑛2�̂�𝜆𝑛𝑛2
𝑁𝑁

1
= � 𝑣𝑣��𝑛𝑛

𝑁𝑁

1
 (22) 

The conditional volatility concentration curve is defined as: 

�̂�𝑠𝑛𝑛 ≡
w��n2λ�n2

𝑆𝑆𝑆𝑆(𝑅𝑅𝑤𝑤)
=

v��n

�∑ v��n𝑁𝑁
1

,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (23) 

and finally the conditional diversification distribution is given by:   

�̂�𝑝𝑛𝑛|𝐴𝐴 ≡
𝑣𝑣��𝑛𝑛

∑ v��n𝑁𝑁
𝐾𝐾+1

,     𝑛𝑛 = 1,⋯ ,𝑁𝑁 (24) 

where 𝐴𝐴 is the constraint matrix.  

To perform portfolio management against a benchmark, the same strategy applies: simply 

replacing the portfolio weights with the vector of the relative bets (𝑤𝑤 ↦ 𝑤𝑤 − 𝑏𝑏) and eventually 

this will yield the relative conditional diversification distribution. 

2.3 Entropy 

 The diversification distribution defined above can be treated as a set of probability 

masses, given that it is always defined, positive and sums to one, whether unconditional or 

conditional, absolute or relative to a benchmark. The level of diversification of a given portfolio 

can be viewed from the shape of the diversification distribution curve: a well diversified 

portfolio leads to approximately equal masses, total risk is uniformly distributed in all the 

principal portfolios; an ill diversified portfolio shows strong masses on some of the principal 

portfolios. To quantitatively measure the level of portfolio diversification, we introduce a term 

called entropy, as well as its exponential: 

𝐸𝐸𝑛𝑛𝐸𝐸 ≡ −∑ 𝑝𝑝𝑛𝑛ln𝑝𝑝𝑛𝑛𝑁𝑁
𝐾𝐾+1   and   𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 ≡ exp (𝐸𝐸𝑛𝑛𝐸𝐸) (25) 
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where 𝐾𝐾 is the number of constraints (this reduces to unconditional case when 𝐾𝐾 = 0). Given a 

portfolio consisting of 𝑁𝑁  underlying securities, the value of 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸  indicates the degree of 

aggregation of the total risk. When 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 = 1, the portfolio risk is completely due to one single 

principal portfolio. When  𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 = 𝑁𝑁 (in unconditional case) or 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 = 𝑁𝑁 − 𝐾𝐾 (in conditional 

case), the portfolio risk uniformly spread among the 𝑁𝑁 or 𝑁𝑁 − 𝐾𝐾 available principal portfolios. 

2.4 Mean Diversification Efficient Frontier 

 Mean-diversification efficient frontier is given by: 

𝑤𝑤𝜑𝜑 ≡ argmax𝑤𝑤∈𝐶𝐶{𝜑𝜑𝜇𝜇𝑇𝑇𝑤𝑤 + (1 − 𝜑𝜑)𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸(𝑤𝑤)} (26) 

where 𝜇𝜇 is the estimated expect returns and 𝐶𝐶 is a set of investment constraints (including not 

only constraints on rebalancing directions but also constraints on structure of portfolios), 

parameter 𝜑𝜑 ∈ [0,1] indicates the weight allocation on the diversification and on the expected 

return. 

3. Analyses of Market Data 

3.1 Datasets and Constraints 

 Standard and conditional risk analysis will be demonstrated based on two datasets:  

1. The original dataset used in Meucci’s paper [2], which gives: 

a. 𝛴𝛴 : variance-covariance matrix of returns in 30 mid-cap stocks.  

b. 𝜇𝜇 ≡ 0.5𝜎𝜎 : expected returns, estimated by a risk-premium argument. 𝜎𝜎 is the 

vector of standard deviation of individual stock returns. 

c. 𝑤𝑤𝑏𝑏 : benchmark in the same stocks with weights proportional to their market 

capitalization. 

2. The data randomly selected from NYSE spreadsheet, which gives: 
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a. 𝛴𝛴 : variance-covariance matrix of monthly returns in 30 random selected mid-

cap stocks. 

b. 𝜇𝜇  : expected returns, estimated by temporal average of individual stock 

monthly returns. 

c. 𝑤𝑤𝑏𝑏 : benchmark in the same stocks with weights proportional to their temporal 

average of market capitalization. 

The diversification analyses are always performed against a benchmark 𝑤𝑤𝑏𝑏 for generality. 

In the analyses, two types of constraints are involved. The following explains the constraints: 

1. Portfolio constraints (define the ranges, structures of portfolio weights) 

a. Long-Short constraint: −0.1 ≤ 𝑤𝑤𝑖𝑖 ≤ 1.0,    𝑖𝑖 = 1,⋯ ,𝑁𝑁 

b. Long-Only constraint: 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1.0,    𝑖𝑖 = 1,⋯ ,𝑁𝑁 

c. Budget constraint (always assumed): ∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 1.0 

2. Rebalancing constraints (define the directions of re-allocation) 

a. Budget constraint: ∑ ∆𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0 (no refinancing) 

b. No-trading constraint: ∆𝑤𝑤𝑖𝑖 = 0  for 𝑖𝑖 = 1, 2, 3 (first 3 stocks are suspended 

from trading, for example) 

3.2 Analyses of Meucci’s Data 

3.2.1 Long-Short Portfolio with Unconstrained Rebalancing 
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Figure 1. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 
 

In this case, portfolio follows the budget constraint and long-short constraint. 

Rebalancing is allowed in any directions. The mean-diversification efficient frontier is obtained 

through an optimization procedure. This basically reproduces the figures as show in Meucci’s 

paper[1]. As shown in the Figure 1, total risk of the equally-weighted portfolio concentrates on 

the 6th principal portfolio. It ends up with 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 = 5.52, and thus it is not well diversified and 

way off of the mean-diversification efficient frontier. The bottom two plots show the 
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diversification profiles of the portfolios in two extreme cases. The portfolio with maximal 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸 

has a relative diversification distribution that nearly uniformly spreads among the principal 

portfolios, while the portfolio with the highest expect return almost fully concentrates on the first 

principal portfolio. As expected, lower diversification level leads to higher expected return, 

while higher diversification level leads to lower expected return. 

3.2.2 Long-Only Portfolio with Unconstrained Rebalancing 

 In this case, portfolio follows the budget constraint and long-only constraint. Rebalancing 

is allowed in any directions. The results are shown in Figure 2 and look similar to that of 

unconstrained long-short portfolio except for the mean-diversification efficient frontier. Long-

only portfolio has a more concave frontier. An increase in diversification reduces the expected 

return more rapidly than that of long-short portfolios. A possible explanation to this observation 

is that long-only portfolios cannot take advantage of long-short hedging and therefore has fewer 

ways to adjust the risk.  
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Figure 2. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 

 
 
3.2.3 Long-Only Portfolio with Constrained Rebalancing 

 In this case, portfolio must follow the budget constraint and the long-only constraint and 

rebalancing of portfolio must be subject to the budget constraint and the no-trading constraint. It 

should be noted that in the Figure 3, the first 4 principal portfolios are the constrained principal 
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portfolios, while the remaining ones are unconstrained. Rebalancing can only be performed in 

terms of a linear combination of the unconstrained conditional principal portfolios. 

It can be observed that the portfolio with maximal 𝒩𝒩𝐸𝐸𝑛𝑛𝐸𝐸  has a relative diversification 

distribution uniformly spreads among the 26 unconstrained principal portfolios. The 

diversification significantly lowers the risk associated with the unconstrained principal 

portfolios, and eventually the risk due to the first constrained principal portfolio emerges as it 

cannot be diversified. This is consistent with the fact that portfolios have to bear the risks 

associated with the constrained principal portfolios. 

Note that the portfolio with highest expect return almost fully concentrates on the first 

unconstrained principal portfolio (or the 5th one, overall). This is because as the first 

unconstrained principal portfolio accounts for much of the total risk, it should also have the 

highest expected return. 

Another observation is that the mean-diversification efficient frontier looks less smooth 

than in previous two cases. This is because the smoothness of the frontier curve heavily depends 

on the relative difference in the magnitude of eigenvalues. For example, if we have multiple 

identical eigenvalues, the total risk can be diversified into either of the corresponding principal 

portfolios or their linear combinations, which may leads to multiple optimal solutions. This is 

especially true for the first (largest) few eigenvalues, as their corresponding principal portfolios 

are the biggest factors accounting for the total risk. As a result, we will see jumps in the frontier 

curve due to the ambiguity. To illustrate this observation, we can compare the volatilities (i.e. 

eigenvalues) of principal portfolios between the unconstrained long-only case (Figure 2) and the 

constrained long-only case (Figure 3). We can see that the former has a smoother step-down in 

the largest volatilities, which leads to an overall bigger mutual difference among them and 
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therefore improves the uniqueness of the optimal solution. The latter however has similar values 

for the 2nd, 3rd and 4th largest volatilities, which introduces ambiguities. 

 

 
Figure 3. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇).  
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3.2.4 Long-Short Portfolio with Constrained Rebalancing 

 

 
Figure 4. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 

 

 In this case, portfolio must obey the budget constraint and the long-short constraint. 

Rebalancing of portfolio must obey the budget constraint and the no-trading constraint. All the 

results are consistent with the logic that has been discussed in previous cases. The evident 
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discontinuity in the mean-diversification efficient frontier is primarily due to the similarity in 

magnitudes among the 2nd, 3rd and 4th largest volatilities. 

3.3 Analyses of NYSE Data 

3.3.1 Long-Short Portfolio with Unconstrained Rebalancing 

 

 
Figure 5. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 
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In this case, portfolio follows the budget constraint and long-short constraint. 

Rebalancing is not constrained. As one can see, the 2nd volatility is very close to the 3rd and the 

5th is very close to the 6th. This is no doubt will introduce jumps in the mean-diversification 

efficient frontier curve as shown in the Figure 5. However the overall trend can still be clearly 

observed. Equally weighted portfolio is way off of the frontier curve and far suboptimal. Note 

that the risk of the portfolio with maximal expected return is strongly associated with multiple 

principal portfolios. This means the market is not one factor dominant and has multiple 

comparable uncorrelated risk sources. 

3.3.2 Long-Only Portfolio with Unconstrained Rebalancing 

In this case, portfolio follows the budget constraint and long-only constraint. Rebalancing 

is allowed in any directions. As expected, the results are consistent. One observation is that the 

overall expected return, as compared with the long-short unconstrained case, is quite small. Since 

this is a return against a benchmark, it can be reasonable. 
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Figure 6. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 
 
 

3.3.3 Long-Only Portfolio with Constrained Rebalancing 

In this case, portfolio must follow the budget constraint and the long-only constraint and 

rebalancing of portfolio must follow the budget constraint and the no-trading constraint. As seen 

in the Figure 7, the 3 largest volatilities are approximately equal. This generates a great deal of 

ambiguities in searching for optimal solutions for mean diversification efficient frontier. As a 
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result, the frontier curve looks lousy, however, the equally weighted portfolio is still clearly far 

suboptimal. 

 

 

 
Figure 7. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 
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3.3.4 Long-Short Portfolio with Constrained Rebalancing 

In this case, portfolio must obey the budget constraint and the long-short constraint and 

rebalancing of portfolio must obey the budget constraint and the no-trading constraint. All the 

results are consistent. As usual, for the portfolio with max(𝒩𝒩Ent), diversification relaxes much 

of the risks associated with unconstrained principal portfolios, while it can do little with the 

constrained principal portfolios. 

 

 
Figure 8. Top-left: equally weighted portfolio relative to benchmark. Top-right: mean-
diversification efficient frontier (red dot represents the equally-weighted portfolio). 
Bottom-left: portfolio at max(𝒩𝒩Ent). Bottom-right: portfolio at max(𝜇𝜇). 
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4. Conclusions 

 It has been demonstrated how to utilized the standard and the conditional principal 

component analysis method to decompose and analyze portfolio risks. Conditional principal 

component analysis method provides effective way to factorize the portfolio risk given 

constraints imposed on either portfolio structure or reallocation strategy. Diversification 

distribution, a direct product of this analysis, provides a powerful tool to analyze the fine 

structure of a portfolio concentration profile in various situations. The effective number of bets, 

defined based on the entropy of the diversification distribution, gives a quantitative index of 

diversification. And finally, the mean diversification efficient frontier provides a quantitative 

framework to manage the trade-off between the expected return and the effective number of 

uncorrelated bets.  
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  1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

  2 % Project: Diversification

  3 % Name: Changwei Xiong, 12/08/2009

  4 % 

  5 %The program is based on Meucci's paper.

  6 %The first dataset is Meucci's data used in 

  7 %his paper. The second dataset is adapted from Sakai

  8 %as provided for the final project

  9 %

 10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 11 

 12 function Final

 13 clc

 14 close all

 15 clear all

 16 

 17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 18 %

 19 % toggle the switches to choose the dataset and constraints,

 20 %

 21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 22 if 0 % select dataset 

 23     load returns.csv 

 24     load mktcaps.csv

 25     S = cov(returns);

 26     %mu = 0.5 * sqrt(diag(S));

 27     mu = mean(returns)';

 28     wb = 0.0*mean(mktcaps)'/sum(mean(mktcaps));

 29 else

 30     load Data

 31     S = S;

 32     mu = Mu;

 33     wb = w_b;

 34 end

 35 

 36 % total number of assets

 37 N = length(mu);

 38 % equally weighted portfolio - benchmark

 39 w0 = ones(N,1)/N - wb;

 40 

 41 

 42 if 0 % select portfolio constraints

 43     % long-only constraint

 44     PCS.A = -eye(N); % A*w<=b ==> A*(w-wb)<=b-A*wb

 45     PCS.b = -PCS.A*wb;

 46     % budget constraint

 47     PCS.Aeq = ones(1,N); % Aeq*w = beq

 48     PCS.beq = 1 - PCS.Aeq*wb;

 49 else

 50     % long-short constraint

 51     PCS.A = [eye(N); -eye(N)]; % A*w<=b ==> A*(w-wb)<=b-A*wb

 52     PCS.b = [ones(N,1); 0.1*ones(N,1)] - PCS.A*wb;



 53     % budget constrain

 54     PCS.Aeq = ones(1,N); % Aeq*w = beq

 55     PCS.beq = 1 - PCS.Aeq*wb;

 56 end

 57 

 58 

 59 if 0 % select rebalancing constraints

 60     % budget constraint and trading suspension for first 3 stocks

 61     RCS = [ones(1,N)];%; eye(3,N)];

 62 else

 63     % no constraint

 64     RCS = [];

 65 end

 66 

 67 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 68 

 69 [E, L, G] = PrinComp(S, RCS);

 70 MakePlots(E, L, w0);

 71 

 72 w = MeanDivEffFrontier(G, mu, w0, PCS);

 73 MakePlots(E, L, w(:,1));

 74 MakePlots(E, L, w(:,end));

 75 end

 76 

 77 function w = Ptfl_at_MaxRet(mu, PCS)

 78 % find w : max(mu'*w)|(A*x<=b & Aeq*x = beq) 

 79 w = linprog(-mu, PCS.A, PCS.b, PCS.Aeq, PCS.beq);

 80 end

 81 

 82 function w = Ptfl_at_MaxEnt(G, w0, PCS)

 83 % find min of negative entropy == find max of entropy

 84 w = fmincon(@NegativeEntropy, w0, ...

 85             PCS.A, PCS.b, PCS.Aeq, PCS.beq, ...

 86             [],[],[],...

 87             optimset('Algorithm','active-set', ...

 88                      'MaxFunEvals',10000, ...

 89                      'TolFun',1e-15, ...

 90                      'TolCon',1e-15, ...

 91                      'TolX'  ,1e-15));

 92 

 93     % embedded, compute negative entropy

 94     function negEnt = NegativeEntropy(w)

 95         v = G*w;

 96         varcon = v.*v;

 97         p = max(1e-10, varcon/sum(varcon));

 98         negEnt = p'*log(p);

 99     end

100 end

101 

102 function w = MeanDivEffFrontier(G, mu, w0, PCS)

103 RmaxRet = mu' * Ptfl_at_MaxRet(mu, PCS);

104 RmaxEnt = mu' * Ptfl_at_MaxEnt(G, w0, PCS);



105 

106 % mean-diversification efficient frontier

107 NP = 60;

108 ret = linspace(RmaxEnt, RmaxRet, NP);

109 %ret = ret(2:end-1);% remove the two extremas

110 %ret = linspace(RmaxEnt, 0.9*(RmaxRet-RmaxEnt)+RmaxEnt, NP);

111 NP = length(ret);

112 

113 Nent = zeros(NP,1);

114 w = zeros(length(mu), NP);

115 for i = 1:NP

116     pcs = PCS;

117     pcs.Aeq=[pcs.Aeq; mu'];

118     pcs.beq=[pcs.beq; ret(i)];    

119     w(:,i) = Ptfl_at_MaxEnt(G, w0, pcs);      

120     Nent(i) = EntropyExponential(G, w(:,i));

121 end

122 

123 fontsize = 12;

124 linewidth = 2;

125 markersize = 10;

126 figure;

127 hold on;

128 plot(Nent, ret, 'o', ...

129     'LineWidth',linewidth,...

130     'MarkerEdgeColor','k',...

131     'MarkerFaceColor','g',...

132     'MarkerSize',markersize);

133 set(gca,'FontSize',fontsize);

134 ylabel('Expected Return','FontSize',fontsize);

135 xlabel('N_{Ent}','FontSize',fontsize);

136 title('Mean-Diversification Efficient Frontier','FontSize',fontsize);

137 grid on;

138 

139 ret = mu'*w0;

140 Nent = EntropyExponential(G, w0)

141 plot(Nent, ret, 'o', ...

142     'LineWidth',linewidth,...

143     'MarkerEdgeColor','k',...

144     'MarkerFaceColor','r',...

145     'MarkerSize',markersize);

146 end

147 

148 function Nent = EntropyExponential(G, w)

149     s = G*w;

150     p = max(1e-10, (s.*s)/(s'*s));

151     Nent = exp(-p'*log(p));

152 end

153 

154 function [E, L, G] = PrinComp(S, A)

155 if nargin==1 || isempty(A)

156     [E, L] = eig(S);



157     E = fliplr(E);

158     L = flipud(diag(L));

159     G = diag(sqrt(L))/E;

160 else

161     [K, N] = size(A);

162     E = [];

163     B = A;

164     for n = 1:N-K

165         if n > 1

166             B = [A; E'*S];

167         end

168         E = [E, getFirstPrinComp(S, B)];

169     end

170 

171     for n = N-K+1:N

172         B = E'*S;

173         E = [E, getFirstPrinComp(S, B)];

174     end

175     % swap order

176     E=[E(:,N-K+1:N) E(:,1:N-K)];

177     L = diag(E'*S*E);

178     [E, L] = SortPrinComp(E, L);

179     G = diag(sqrt(L))/E;

180     G = G(K+1:N, :);

181 end

182 end

183 

184 %compute the first principal component

185 function e = getFirstPrinComp(S, B)

186     P = eye(size(S,1));

187     if rank(B)>0

188         P = P - B'/(B*B')*B;

189     end

190     [E, L] = eig(P*S*P');

191     [m, i]=max(diag(L));

192     e=E(:,i);

193 end

194 

195 function [E_, L_] = SortPrinComp(E, L)

196 % sort in descending order

197 L_ = sort(L, 'descend');

198 E_ = zeros(size(E,1));

199 for i = 1:length(L)

200     E_(:,i) = E(:, L==L_(i));

201 end

202 end

203 

204 function MakePlots(E, L, w)

205 width = 0.6;

206 fontsize = 11;

207 

208 %[E, L] = SortPrinComp(E, L);



209 Xn = 1:size(E,1);

210 

211 %relative exposures to the principal portfolios

212 figure;

213 hold on;

214 wt = E\w;

215 subplot(4,1,1);

216 bar(Xn, wt, width, 'k');

217 set(gca,'FontSize',fontsize);

218 xlim([min(Xn)-0.5, max(Xn)+0.5]);

219 title('Relative Exposures to Principal Portfolios (weights)' ,'fontsize',fontsize);

220 grid on;

221 

222 %Volatilities of principal portfolios

223 subplot(4,1,2);

224 bar(Xn, sqrt(L), width, 'k');

225 set(gca,'FontSize',fontsize);

226 xlim([min(Xn)-0.5, max(Xn)+0.5]);

227 title('Volatilities of Principal Portfolios (eigenvalues)' ,'fontsize',fontsize);

228 grid on;

229 

230 %variance concentration

231 V = wt.^2.*L;

232 

233 var = sum(V);

234 std = sqrt(var);

235 %volatility/tracking error concentration curve

236 subplot(4,1,3);

237 bar(Xn, V/std, width, 'k');

238 set(gca,'FontSize',fontsize);

239 xlim([min(Xn)-0.5, max(Xn)+0.5]);

240 title('Tracking Error Concentration','fontsize',fontsize);

241 grid on;

242 

243 subplot(4,1,4);

244 bar(Xn, V/var, width, 'k');

245 set(gca,'FontSize',fontsize);

246 xlim([min(Xn)-0.5, max(Xn)+0.5]);

247 %xlabel('X axis = Principal Portfolio Number','fontsize',fontsize);

248 title('Relative Diversification Distribution','fontsize',fontsize);

249 grid on;

250 end
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