

Generation of Multi-dimensional Sobol Sequence

Copyright © Changwei Xiong 2013

March 12, 2013

last update: April 5, 2020

Suppose we want to generate 𝑛 points of 𝑑-dimensional Sobol quasi-random sequence 𝑥. Let 𝑥𝑖,𝑗

denotes the 𝑗-th (1 < 𝑗 < 𝑑) dimension of the 𝑖-th (1 < 𝑖 < 𝑛) point in the sequence. To generate a

sequence for each dimension, say the 𝑗-th dimension, we need to choose a primitive polynomial of some

degree 𝑝 for this dimension (i.e. one polynomial for each dimension) [1]

𝑃(𝑥) ≡ 𝑥𝑝 + 𝑎1𝑥𝑝−1 + 𝑎2𝑥𝑝−2 + ⋯ + 𝑎𝑝−1𝑥 + 1 (1)

where the coefficient 𝑎1, ⋯ , 𝑎𝑝−1 ∈ {0,1}.

The direction number 𝑣𝑘 must be prepared. Each direction number 𝑣𝑘 is a binary fraction and

can be expressed as

𝑣𝑘 =
𝑚𝑘

2𝑘
 ∀ 𝑘 = 1,2, ⋯ , ℎ (2)

where ℎ = ⌈log2 𝑛⌉ and 𝑚𝑘 must be odd and 0 < 𝑚𝑘 < 2𝑘 . The first 𝑝 of 𝑚𝑘, 𝑘 = 1, ⋯ , 𝑝 must be

given. The subsequent 𝑚𝑘, 𝑘 = 𝑝 + 1, ⋯ , ℎ can be calculated by the following recursive relationship

𝑚𝑘 = 2𝑎1𝑚𝑘−1 ⊕ 22𝑎2𝑚𝑘−2 ⊕ ⋯ ⊕ 2𝑝−1𝑎𝑝−1𝑚𝑘−𝑝+1 ⊕ 2𝑝𝑚𝑘−𝑝 ⊕ 𝑚𝑘−𝑝

∀ 𝑘 = 𝑝 + 1, ⋯ , ℎ

(3)

where ⊕ is the bit-by-bit “exclusive or” operator. Dividing (3) by 2𝑘 on both sides, the 𝑣𝑘 can written in

a recursive form

𝑣𝑘 = 𝑎1𝑣𝑘−1 ⊕ 𝑎2𝑣𝑘−2 ⊕ ⋯ ⊕ 𝑎𝑝−1𝑣𝑘−𝑝+1 ⊕ 𝑣𝑘−𝑝 ⊕
𝑣𝑘−𝑝

2𝑝
, ∀ 𝑘 = 𝑝 + 1, ⋯ , ℎ (4)

Changwei Xiong, April 2020 https://modelmania.github.io/main/

2

Then we have the Sobol sequence for the 𝑗-th dimension

𝑥𝑖 = 𝑖1𝑣1 ⊕ 𝑖2𝑣2 ⊕ ⋯ and 𝑖 = (⋯ 𝑖3𝑖2𝑖1)2 (5)

where 𝑖𝑘 ∈ {0,1} denotes the 𝑘-th bit from the right when 𝑖 is written in a binary form.

The above equation can be replaced with a more efficient Gray code implementation. The Gray

code of an integer 𝑖 is defined as

𝑔𝑖 = 𝑖 ⊕ ⌊
𝑖

2
⌋ = (⋯ 𝑖3𝑖2𝑖1)2 ⊕ (⋯ 𝑖4𝑖3𝑖2)2 (6)

It has the property that the binary 𝑔𝑖+1 and 𝑔𝑖 differ in only the 𝑧-th bit, where 𝑖𝑧 is the first zero bit in

𝑖 = (⋯ 𝑖𝑧 ⋯ 𝑖2𝑖1)2. In fact, Gray code is simply a reordering of the nonnegative integers within every

block of 2𝑚, 𝑚 = 0,1, ⋯. With the Gray code implementation, we simply obtain the sequence in a

different order while still preserving their uniformity properties. Hence, instead of using (5), we can

generate the Sobol sequence using

𝑥𝑖 = 𝑔𝑖,1𝑣1 ⊕ 𝑔𝑖,2𝑣2 ⊕ ⋯ and 𝑔𝑖 = (⋯ 𝑔𝑖,3𝑔𝑖,2𝑔𝑖,1)
2
 (7)

Since 𝑔𝑖+1 and 𝑔𝑖 differ in only the 𝑧-th bit, for a more efficient implementation, we can generate the

sequence recursively using

𝑥𝑖+1 = 𝑥𝑖 ⊕ 𝑣𝑧 where 𝑧 = log2(𝑔𝑖+1 ⊕ 𝑔𝑖) + 1 (8)

In real implementation the binary fractions 𝑣𝑘 , 𝑘 = 1,2, ⋯ , ℎ are represented by integers, that is

𝑣𝑘 = 2𝐵𝑣𝑘 (9)

where 𝐵 is the maximum number of bits used to represent an integer number in a computer language.

For example, in Excel/VBA, the 𝐵 = 31 (because VBA does not support unsigned long integers). With

this change, the computed 𝑥𝑖 is actually an integer, which can then be divided by 2𝐵 to convert to a

decimal number.

Changwei Xiong, April 2020 https://modelmania.github.io/main/

3

REFERENCES

1. http://web.maths.unsw.edu.au/~fkuo/sobol/

	REFERENCES

