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This note provides an introduction to interest rate models. At first, it attempts to explain the
martingale pricing theory and change of numeraire technique in an intuitive way (hopefully?!).
Subsequently it covers several topics in rates models, including an introduction to rates market
instruments, convexity adjustments, HIM framework, Quasi-Gaussian model, Linear Gaussian model,
Hull-White 1-factor model, Jarrow-Yildirim model, and eventually the Libor Market model. Two main
numerical method, PDE and Monte Carlo simulation, are also discussed.

It should be noted that nowadays the OTC derivative market has moved to central clearing.
Majority of the OTC derivatives are now traded with collaterals to reduce the exposure of the counterparty
credit risk. The classic single curve Libor discounting is no longer applicable. OIS discounting has been
established as the new standard for collateral discounting in the OTC markets. In this notes, we will cover
the Hull-White 1-factor model in multi-curve framework. However, some of the notes still rely on the
classic Libor discounting, the formulas and equations derived in this way may appear a bit outdated but
they do provide essential ingredients of development and applications of the models. Meanwhile, | am
expecting to expand the notes to cover more in OIS discounting as well as other interesting topics in a
long run.

1. RISk NEUTRAL MEASURE
1.1.  Heuristic Explanation: Risk Neutral Measure < No Arbitrage
Suppose there is a non-dividend bearing and market tradable asset A, whose spot price follows a

stochastic differential equation (SDE)
dA;
— = udt + odW, (1)
At

The solution to this equation is

AT=AseXp<#(T—S)—%GZ(T—S)+U(WT—W5)> )



where (W; — W,) ~N'(0,T — s) is a normally distributed random variable with mean 0 and variance

(T —s). Here we denote t the time variable, u a constant drift and ¢ a constant volatility. Unless
otherwise stated, we always assume s < t < T for start s and maturity T. The extra term —%az (T —5)

in the exponent comes from the fact that f (x) = exp(x) is a convex function.

Financial Derivatives are typically priced assuming no frictions in financial markets. Under this
assumption, one can find a portfolio strategy that does not use the derivative and only requires an initial
investment such that the portfolio pays the same as the derivative at maturity. The portfolio is called a
replicating portfolio. The derivative must be worth the same as the replicating portfolio if financial markets
are frictionless, otherwise there will be an opportunity to make a risk-free profit (i.e., arbitrage). Suppose
that at time t we long a forward contract that will pay 0 cash (i.e., contractual price = 0) for one unit of
the asset upon maturity at a future time T > t. The payoff cashflow at T is just the terminal spot price Ay.
Since Ay is a random variable at time t, we may assume that current value of the forward contract can be

expressed as an expectation of the discounted contingent claim under a certain probability measure ().

That is F, ; = E* [AT?
t

:7-}] = E; [AT [;—:], where the expectation E[-|F,] conditional on filtration F; is

denoted by E,[-] for brevity. The discount factor D, can also be a random variable, which is defined as

t
D; = exp (—f rudu> or dD;=—rD.dt (3)
N

with instantaneous risk free rate ;. To replicate the derivative payoff cashflow, one can (statically) hold
one unit of asset 4, at time ¢ (plus 0 amount of money market account M, = D;1). Upon maturity, this
will have the same value as the forward contract (i.e., the same payoff) regardless of the stochasticity of

the asset price. To avoid an arbitrage opportunity, current value of the forward contract must equal to the
present spot price of the asset, that is F,r = Ef [AT ?] = A;. However, a question arises: “Under which
t

probability measure does the equality hold?”



Notice that D, is known at t and can be moved out of the expectation, we therefore have
E;[ArDy] = A.D;, which indicates that under such a probability measure the discounted spot process is
a martingale. Let us first assume the expectation is under physical measure P, we then have the dynamics
of the discounted spot process as

ADy D A AD;

= (u—r)dt + odW,; 4)
The integrated solution to the above SDE is
1
ArDr = A¢Dy exp <(# —r)(T—1t) - EO'Z(T —t)+o(Wr — Wc)) ®)
and hence

1
]Et[ATDT] = AtDte(M—T')(T—t) ]Et lexp <_ EO-Z(T - t) + O-(WT - Wt))l = AtDte(H—T)(T—t) (6)

=1

It is obvious that E.[ArDr] # A.D, unless u = r. To satisfy the arbitrage free condition F, = 4;, we
must find an equivalent probability measure under which E;[ArDr] = A.D; is a martingale (i.e., the
equivalent martingale measure). In other words, under such a measure, we must have ¢ = r. Heuristically
speaking, under this measure one has no preference on risky or riskless underlying assets. All assets would
have a unique rate of return at r;. This is known as risk neutral measure, denoted commonly by Q.

Let A be the market price of risk (i.e., the risk premium that investor demand to bear risk), such
that u — r = Ao. The asset price process in (1) becomes

dA; .
o= udt + odW = rdt + adW; @)

t

for dW, = dW, + Adt being a Brownian motion under Q. Hence the discount asset d(A.D;) =
A.D,adW, becomes a martingale and thus E,[A;D7] = A,D;. (We usually use a “tilde” mark to denote
quantities associated with risk neutral measure. For example, the E,[-] denotes an expectation under risk

neutral measure Q.)



Based on the heuristic explanation, we can generalize the risk neutral pricing theory as follows:
one agent can choose an initial capital X; (e.g., in our example the value of A;) and a portfolio strategy
A; (e.g., long one unit of asset A) to hedge a short position in a derivative (e.g., the forward contract that
pays one unit of asset A upon maturity) whose payoff upon maturity is V; (e.g., Ay in our example).
Namely, we want to have X; = V; almost surely. The value X, of the hedging portfolio is the capital
needed at time t in order to successfully complete the hedge. Hence, we call this value the price of the
derivative V; at time t (otherwise arbitrage arises). This arbitrage free property gives rise to the classic
risk neutral pricing formula (also known as martingale pricing formula)

VD, = E/[VeDr] V t<T (8)
1.2.  Equivalent Probability Measure and Girsanov Theorem

Two probability measures N and U on (2, F) are said to be equivalent if they agree which sets in

F have probability zero. Let (12, F,N) be a probability space and let Z be an almost surely non-negative

random variable with EN[Z] = 1. For A € F, define

U(A) = f Z(w) dN(w) 9)

A
then U is a probability measure. Furthermore, if X is a nonnegative random variable, then
EV[X] = EN[XZ] (10)

If Z is almost surely strictly positive, we also have
X

The Z is called the Radon-Nikodym derivative of U with respect to N and we write

v (12)

“=3

This indicates that Z is like a likelihood ratio of the two probability measures.
Lastly, we introduce the Girsanov Theorem [1], which describes how the dynamics of stochastic

processes change when the original measure is changed to an equivalent probability measure. The theorem



is especially important and has profound influence on the theory of financial mathematics. To make it
more general, here we focus on a multi-dimensional version of the theorem (which can be easily reduced
to 1D): Let t > s be a fixed positive time and let 8, be an adapted n-dimensional process. Also Let WN
be an n -dimensional Brownian motion under the measure N (with correlated components, e.g.,
(@wM(dwN)' = pdt where matrix p is the instantaneous correlation and the prime symbol denotes a

matrix transpose). If we define
1 t t
Z, = exp (—5 f 0,,p6,du — f elgquN> and  dWY = dWN + pb,dt (13)
S S
then under the measure U given by
U(4) = fZ(w) dN(w), VAEF (14)

A

the process W, is an n-dimensional Brownian motion (with instantaneous correlation p).

One example to show the claim is that, if under U we have a martingale process for s < t

1 t t
X, = X exp (—EJ 10,p0,1du +f ﬂ’auquU> (15)
S N

where o,,is a diagonal matrix! representing an adapted volatility process, then according to (13) we have

1 t t t
X, = X, exp <_§f 1oypo,ddu +f 10, dWN +f ]l’aupeudu> and
S

S N

1 t t 1 t t
X Z; = X exp <—§] 1o, po,du + j 1'0,p6,du — EJ 0,00, du + J (0,1 — Hu)’quN> (16)
S S S S
1 t t
= X, exp <_Ej (o, 1—-06,) p(o,1—6,)du + j (0,1 — Gu)’quN>
S S

The X, Z; process is a martingale under N. Hence the relationship in (10) is satisfied

EEJ [X¢] = [EEI [XeZe] = X, (17)

! To be more flexible, we write the o, here as a diagonal matrix rather than a column vector.
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In fact, the market price of risk process can be regarded as a Radon-Nikodym derivative. It allows
to alter the drift of a Brownian motion W, under physical measure, to create a new Brownian motion W,
under risk neutral measure.
1.3.  Change of Numeraire

A numeraire is any positive non-dividend bearing and market tradable asset. Intuitively, a
numeraire is a reference asset that is chosen so as to normalize all other asset prices with respect to it. We
are interested in the change of numeraires because changing between probability measures is usually

associated with numeraire changes. To explain this, let us first define two market tradable spot processes

ds ~ dN ~
? = ﬂsdt + ]1'0'5th = Tdt + ]1’0'5th, W = ‘Llth + HIO-Nth = Tdt + ]lIUNth

(18)
and 1 =

nx1i

1] ) th =

nx1i

dWi;t], AW, dW; = p dt

nx1l 1xn nxn

where we assume their price dynamics is driven by an common n-dimensional Brownian motion dW,
under physical measure (or by dW, under risk neutral measure). The 1 is a column vector of 1’s used to
aggregate vector/matrix elements. The o5 and gy are two n X n diagonal matrices denoting two adapted
volatility processes associated with asset S and N respectively. Note that the components of dIW, may be
correlated by matrix p, e.g., dW,dW; = pdt. Let A1 be an n x 1 vector of the market price of risk. The
arbitrage-free condition claims that we must have a unique A such that
us—r =104 and puy—r =10yl (19)
With this A, we can write dW, = dW, + Adt.
Choosing a numeraire N implies that the relative price S/N is considered, instead of the asset price

S alone. The following describes the dynamics of S relative to the numeraire N

dS—Sd1+dS+de1
N "N N N
(20)

S S S
=¥ (—uydt —1VoydW; + 1'oypoyldt) + N (usdt + 1'o5dW,;) — Nﬂ’aspa,vﬂdt

11



where the numeraire inverse has the dynamics

1 1 12 1 , , 21
d =~z N + 575 dNdN = = (—uydt — V'oydW, + V'oypoyldt) (21)

Collecting the terms and using the relations in (19), we have

S
d~—
TN = —1'agpoyldt + 1'oypoyldt — uydt — V'oydW; + usdt + 1'agdW,
N covariance dueto 1/N dueto S
= (us — pn)dt + 1'(05 — on)dW, — 1' (a5 — on)poydt (22)

= 1"(o5 — ay)Adt + 1' (a5 — ay)dW; — 1'(ag — ay)poyldt

= 1'(as — oy) (AW, + Adt — pay1dt) = 1' (o5 — ay)(dW; — poy1dt) = 1' (a5 — op)dWN
Under Physical Measure P Under Risk Neutral Measure Q Under Measure N

where the probability measure N is associated with the numeraire N. It tells that the Brownian motions
under different probability measures have the following relationships

th + /1dt = th - thN + pO—Nﬂdt
~—————— ——
Under P Under Q Under N

(23)

The (22) shows the process S/N is a martingale under N, which by definition of martingale implies the

following fundamental relationship

St St

v = ] 2

In fact, the aforementioned risk neutral pricing formula (8) is just a special case of (24), where the money
market account M, is used as the numeraire (recall that D, = M;1).
Moreover, if we define another probability measure U associated with numeraire U, then given the

start s the Radon-Nikodym derivative that forms the measure U from measure N reads

dU U, (N\"' U.N
Zt:_:_t(_t) _ 2t (25)
dN  Ug \N; U N,
According to (22), we have
u U
dﬁ = Nﬂ,(O'U - UN)thN (26)

12



and its integrated solution is

U, U,

t 1 t
—_— = —eXp <—f ﬂ,(O-N - O-U)quN - _f HI(O-N - O-U)p(O-N - Uu)]ldu> (27)
N, Ng s 2 )

Here we follow the Girsanov Theorem to define

U:N.
7, = tVs
UsN¢

t 1 t
= exp (—f 1'(oy — oy)dW,N — Ef 1'(oy — oy)p(oy — GU)]ldu> (28)
S S
hence the resulted Brownian motion under measure U is
t
whl =wN + f p(oy — oy)ldu (29)
S

This is consistent with (23) in differential form
dW[H—I + pO_Uﬂdt = dW[N + pUNﬂdt == th (30)
Suppose that an asset price process X follows an SDE under measure N and another SDE under

measure U, respectively, we must have
dX N / N U / U
7 = ‘U.th + ﬂ O-Xth = ‘llxdt + ﬂ Gxth (31)

Then the adjustment in drift term due to the change of numeraire from N to U is
ug = uy + Voy(dW —dwl) =y =} —1Voyp(oy — oy)dt (32)
1.4.  Forward vs. Futures

Now we will use an example to show the application of the change of numeraire, and eventually
explain the difference in values of Forward and Futures contracts.

Forward Contract: Suppose at time t one may enter into a forward contract on an underlying S;
with a quoted strike price K; (i.e., the forward price) at zero cost V; = 0, and the contract position may
not be closed out until it matures at T. Upon delivery, the contract settles the spot-strike difference
(87 — K;) in cash. There is only one cashflow comes solely from the end. If we define the value of the
payoff cashflow as V; = S; — K, we can use the risk neutral pricing formula to derive the strike price K;

that makes V; = 0

13



1 1 K, -
0 =V, = 5-Ec[DrVr] = -EelDrSr] = 5-Ee[DrPrr] = Se = KePer

t t t
(33)
St [ST l
= K, = — = E{ |—| = E{[S7]
t Pt,T t PT,T t YT

where P, 7 is the price at t of a zero-coupon bond maturing at T'. The probability measure associated with
this bond numeraire is a variant of risk neutral measure called T-forward measure QT. We use EF[-] to
denote the expectation under the measure Q7.

Futures Contract: Atany time from t to T, one may enter or close out the futures contract position
at zero cost before it matures. The cashflows maintained by margin account are distributed over the life
of the contract rather than coming solely at the end. Suppose at t, one enters into a futures contract at zero
cost V, = 0 with a quoted strike K, (i.e., the futures price). The contract may incur a cashflow V,,,, =
Kiiar — K, after a small time interval At due to the market move of K,. According to the risk neutral
pricing formula, we have

0=DV = Et [DevacVerac]l = Et[Dt+At(Kt+At - Rt)] (34)
If we take infinitesimal At, then D,,, = D, e "2t is a known factor at time t, we can move it out of the

expectation, and define recursively

Kt = Et[Kt+At] = kt = IAEit [Et+At[kt+2At]] == IAE‘t[ ET—At[KT] ] (35)
Based on the Iterated Conditioning Expectation Theorem (i.e., If H holds less information than G, then
E[E[X|G]|H] = E[X|H]), the strike price of a futures contract can thus be expressed as

K. = E/[Kr] = E.[S;] = K, = E[S7] (36)

Based on the above derivation, we summarize the forward and futures prices as follows respectively

K, = ET[S7], under T-forward measure Q7
(37)

K, = E,[S7], under risk neutral measure Q

The spread between K, and K, can be derived as
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= St B[S Et[STDt,T] - Et[ST]Et[Dt,T] _ Vt[ST’Dt,T]
Pz Pz Pz

(38)

where D, = Dy/D, and V,[-] denotes the conditional covariance V[:|F,] under risk neutral measure.
The spread comes from the covariance between the spot price S; and the discount factor D, (or indirectly
the spot rate r;). Suppose you long a futures contract on Sy. If the correlation between S; and r; is positive
(negative between S; and D,), the expected return on the excess margin cash is asymmetric and skewed in
your favor. This is because when S; and r; both go up, the futures contract goes in-the-money, and you
can withdraw excess margin cash, which can be deposited at higher rates. However if both S, and r; go
down, the contract goes out-of-the-money with margin calls but you can fund it at lower rates. On the

margin, you invest at higher rates but borrow at lower rates. This asymmetry causes the spread.
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2. SPOT RATE AND FORWARD RATE

The difference between spot rate and forward rate is that, the spot rate is quoted for an immediate
settlement whilst the forward rate is for a settlement in the future. If the interest accrual period is
infinitesimal, we call them instantaneous spot rate (i.e., short rate) r, and instantaneous forward rate f; r,
respectively. The r, is the rate determined at time ¢ for an accrual period between t and t + dt, and f; 7 is
the rate determined at time ¢ for a accrual period in the future between T and T + dT. Since the zero
coupon bond is a market tradable asset whose payoff at maturity is 1, its price is given by the martingale

pricing theorem

1 1 T
Pr = IEt[DTPT T] E¢[Dr] = [Et leXp< f rudu> (39)
t t
The instantaneous forward rate can then be defined in terms of the bond price
dlogP,r . Pir—Pirys T
fer = _a—Tt = }SI_I‘)I;I) ﬁ or P.r=exp|-— j; feudu (40)

Since heuristically f; r is given by a portfolio of market tradable assets (Pt,T — Pt,TJ,AT) denominated in a

numeraire P, ; (divided by a constant AT), we should have the following relationship according to (24)

E)logP, . PJ —PJ S P P S
fir = =L = lim 2L 510 — i T +0 [—”] Ef [frr] = EF[rr] (41)

= l1im
aT 6—0 Pt,T+($6 8—)0 PT T+66

The (40) and (41) are indeed mutually consistent. The proof is as follows

_ 0logPyy 1 afE't[Dt’T]_ 1
for = _a—T _P . 3T = — [Et exp rudu = K’T[Et[Dt,TrT]
(42)
P
=_ET[£r]_ E[ry]
Por |Prr |

where we can move the differential operator into expectation because it is a linear operator and the
expectation is a linear function.
In contrast to the instantaneous forward rate with AT — 0, we may consider a simply compounded

forward rate f; 1, which is an interest rate observed at present time ¢ for a future loan period from T to
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V for t < T <V .By no-arbitrage argument, the rate can be implied from prices of two zero coupon bonds

that mature at T and V/, respectively

PtT - PtV 1 PtT
= . = ——1 43

The interest rate dynamics can be modeled by short rate models, which however emphasize on
instantaneous interest rates that are not directly observable in markets. This makes them less
straightforward to calibrate to the market traded instruments and more difficult to perform hedging and
risk management. To address this issue, one can model the market observable rates (i.e., the simply
compounded forward rate, also known as Libor rates) directly using market models, which will be
discussed in Chapter 11. Lastly, the arbitrage free condition must be satisfied in these models, which is
generalized in the Heath-Jarrow-Morton (HIM) framework that all rates models must comply to. This will

be introduced in Chatper 7.
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3. OIS DISCOUNTING AND MULTI-CURVE FRAMEWORK

Prior to the 2008 financial crisis, interbank deposits posed little credit/liquidity issues, interbank
lending rates (Ibor rates, e.g., Libor, Euribor) were essentially a good proxy for risk free rates. Basis swap
spreads were negligible and thereby neglected. A single yield curve constructed out of selected deposit
rates, FRA/EDF rates and swap rates served both the cashflow projection and discounting purposes.

During the 2008 financial crisis, the failure of some banks however proved that interbank lending
rates (e.g., Libor, Euribor etc.) were not risk-free. Meanwhile there was also significant counterparty credit
risk arising from derivative transactions that were not subject to collateral or margin calls. Basis swap
spreads greatly widened, and persist to this day. The existence of such significant basis swap spreads
reflects the fact that after the crisis the interest rate market has been segmented into sub-areas
corresponding to instruments with different underlying rate tenors, characterized by different rate
dynamics. Traditional single curve based pricing approach ignores the differences. It mixes different
underlying rate tenors and incorporates different rate dynamics, eventually leads to inconsistency.

After the crisis, the market practice has thus evolved to take into account the new market
information (e.g., the basis swap spreads, collateralization, etc.), that translate into the additional
requirement of homogeneity and funding. The homogeneity requirement means that interest rate
derivatives with a given underlying rate tenor must be priced and hedged using vanilla interest rate market
instruments with the same underlying. The funding requirement means that the discount rate of any
cashflow generated by the derivative must be consistent, by no-arbitrage, with the funding rate associated
with that cashflow. Derivatives that trade over-the-counter make use of ISDA agreements to standardize
the contract documents. Driven by the crisis, many ISDA agreements have now included a credit support
annex (CSA) which is an agreement that outlines permissible credit mitigants for a transaction, such as
netting and collateralization in cash. Since standard CSA agreements stipulate daily margination on

collateral and the cash collateral earns a return at overnight rate, thereby overnight rate becomes a natural
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choice for the risk-free discount rate or the funding rate. This is referred to as "OIS discounting” or "CSA
discounting” [2].

The large spread between risk free rate and interbank lending rate during and after 2008 financial
crisis triggered the separation of projection and discount curve in derivative valuation. The traditional
single curve used for both cashflow projection and discounting turned out to be obsolete. The markets
have since nearly switched to multi-curve framework. In addition to discount curve P, , there is another
curve P, - that serves dedicatedly for cashflow projection (here the accent “hat” denotes a quantity related
to projection curve). The quantity P, ; acts as a pseudo-discount factor. Interest rate swaps use the curve
P, 1 to estimate floating rates and hence the projected cashflows, which are then discounted by discount
curve P, r to give present value. The spread between the projection curve and the discount curve reflects
(at least partially) the liquidity and the credit risk.

3.1.  Libor Rates

Libor (London Interbank Offered Ratel) is the daily reference rate at which banks borrow large
amount of unsecured funds from each other. Libor rates are calculated daily through a survey of a panel
of international banks asking how much they would be charged if borrowing cash from other banks (based
on estimates rather than actual trade data). The top and bottom quartiles of quotes are excluded, and those
left are averaged and made public before noon in London. The rates are produced in 10 currencies for 15
maturities (tenors) ranging from overnight to one year. The Libor is widely used as a reference rate for
many financial instruments in both financial markets and commercial fields. Nowadays (as of 2012), At
least $350 trillion notional in derivatives and other financial products are linked to the Libor. There are
many other interbank rates, such as Euribor (Euro Interbank Offered Rate), Tibor (Tokyo Interbank
Offered Rate), etc., that differs for tenor, fixing mechanics, contribution panel, etc. In general, we will

refer to these rates with the generic term “Libor”, discarding further distinctions if not necessary.

! https://en.wikipedia.org/wiki/Libor
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In USD, Libor rates are quoted as an annualized and simply compounded interest rate. It follows
Actual/360 day count convention and modified following with end-of-month business day convention.
The schedule of Libor borrowing is sketched in the following diagram (and will be discussed in more

detail in next section)

On fixing date £, the borrower and the lender agree on a fixed Libor rate L(f, £, £.). The loan takes place
in two business days (i.e., spot lag Ar = 2D) on value date f; and repays on maturity date f,. Two
exceptions apply. First, for overnight (O/N) Libor rate, the fixing and value date are the same. Second, if
two London business days after fixing date falls on a US holiday, the value date will be rolled forward to

the next available business day. The loan accrues interest for a period of the rate tenor. Upon maturity, the

# calendar days between fs and f,

borrower repays the principal N plus interest chi(f,fs,fe) with ¢ = o

A fundamental assumption about the Libor rate L(f, f;, f,) is that the value of the floating coupon
NceL(f, fs, f.) is a market tradable asset. Its price at ¢t for t < f is computed as a discounted forward
coupon, NcyL(t, f;, f.)P(t, ), where the forward Libor rate L(t, f;, f,) is estimated from a projection
curve P(t,T) as

Cfﬁ(tffe)

Lt fs fo) = t<f (44)

Since on fixing date f the forward Libor rate converges to its underlying spot, for simplicity we have just
denoted the spot Libor rate by L(f, f., f.). An implication of the assumption is that the forward Libor rate

is a martingale under f,-forward measure with numeraire P(t, f,)

NerL(t fo fIP( S _ Ly, [chz(frfs»fe)

T —mwle[7
P(t,f.) B TS lzL(t'ﬁ'fa—IEt [L(f foo £] (45)
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P(trf.;) _p(t:fe) _ fe p(f!f.;') _ﬁ(f;fe) ﬁ(tlf.;') _ fe Iﬁ(flfs)l
e ]E e —]E =~
P(f, fe)

oPtf) " crP(f, fo) Pt.f)

On the contrary, the pseudo zero coupon bond P(t, T") cannot be a market tradable asset nor its numeraire-

rebased value a martingale. Only the risk free zero coupon bond P(t, T) can serve as a market tradable
asset and hence a numeraire.

Since the rate L(f, f;, f,) has been fixed at f, the coupon payment of Nc;L(f, f;, f.) at f, is

equivalent to a payment of Nc,L(f, fi, f.)P(f.f.) at f. Using (24) again, we can derive another

martingale under f;-forward measure

NerL(t fo, Pt fo) _ v lchi(f,ﬂ,ﬁ)P(f,ﬁ)l
P(t,f;) ‘ P(f.f5)

_P@A) (ﬁ(t,fs) ) 1) _h IP(f,fe) (ﬁ(f,fs) ) 1)}
P ) \P fo) CIPE R PG A

P(t. )P L) _ S IP(f,J%)ﬁ(f,fs)l
)

T PGPS PGPS

(46)

= n(t, fs, f) = EFI(, £ £2)]

where we define a multiplicative spread between the projection and the discount curve as

_ Pt f.) P(t, f) _ 1+ Lt fio f2)
P(t,f) P(t.f,) 1+ceLl(tfsfe)

N, fs, fe) (47)

In (47), the L(t, f, f.) is a (pseudo) Libor rate estimated on discount curve similar to (44)

P(t fs) — P(t. fe)
Cfp(tf fe)

L(t, fs fo) = Vi<f (48)

Since both numerator and denominator are market tradable assets, the L(t, f;, f,) is a martingale under f,-
forward measure.
3.2.  Interest Rate Swap: Schedule Generation

Payment and fixing schedules play important roles in interest rate modeling and pricing. A fixed

for floating interest rate swap exchanges a stream of periodic fixed interest payments with a stream of
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periodic floating interest payments over a term to maturity. Floating leg of the swap (e.g., fixed in advance
and paid in arrears) can be regarded as a portfolio of coupon cashflows paid at a series of scheduled dates.
Due to variations in holidays and conventions agreed by parties, the way to compute those dates must be
detailed. Here we will use a swap floating leg as an example to explain the schedule generation. Table 3.1
lists some common specifications of a floating leg, which can also apply to a fixed leg with minor
modifications.

Table 3.1 Specifications of a typical IRS leg

attribute symbol remark/example
trade date’ to today
spot date? ts ts =ty D A,
spot lag A 2D
payment lag® A, 0D
effective date* to te = ayg
maturity date® tm tm = Qne
roll day® d 29
payment/reset frequency’ P 1M, 6M, 12M
rate index® L 6M Euribor
day count convention T Actual/360
business day convention® B Modified Following and End of Month
calendar TARGET, US, UK

! Trade date is the day on which the swap is traded, e.g. today.

2 Spot date is the effective date of a spot starting swap. It is usually calculated as “spot lag” of business days after the trade
date. The “@” denotes the date increment in business days.

3 Most swaps have payment lag of “0D”. One exception is the overnight index swap (OIS). Depending on conventions, some
OIS swaps may not be able to fix its floating rate until the end of each coupon period. This incurs a payment lag.

4 Effective date is also referred to the start date, the value date or the settlement date. It must be a business day and coincides
with the start date of the first coupon period. If t, = tg, itis usually called spot starting swap (e.g. T+2), while t, > t; we have
a forward starting swap. In the case where t, = t,, it is called same day starting swap (e.g. T+0).

5 Maturity date coincides with the end date of the last coupon period.

® Roll day (e.g. an integer between 1 and 31) defines on which day in a month the interest accrual periods start/end. It means
that the (unadjusted) dates will be on the given day. In a front-stubbed swap, maturity date must be the business convention
adjusted roll day of that month.

" Payment/reset frequency define the size of coupon periods for a fixed/floating leg, e.g. Monthly, Quarterly, Semi-Annually,
or Annually.

8 Rate index is the benchmark interest rate that the floating leg payment linked to. The tenor of the rate index is usually the
same as the payment/reset frequency of the swap leg.

% Business day convention (e.g. Modified Following with adjustment to period end dates) on a calendar (e.g. TARGET, US,
UK) adjusts rolled (unadjusted) dates to business days.
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Swap specifications vary across currencies and regions, and usually follow the interest rate swap (IRS)

market conventions as summarized in Table 3.2 [3].

Table 3.2 Most common vanilla swap conventions

floating leg fixed leg

currency spot lag | reference period convention | period convention
USD (NY) 2 Libor 3M ACT/360 6M 30/360
USD (London) 2 Libor 3M ACT/360 1Y ACT/360
EUR: 1Y 2 Euribor 3M ACT/360 1Y 30/360
EUR: > 1Y 2 Euribor 6M ACT/360 1Y 30/360
GBP: 1Y 0 Libor 3M ACT/365 1Y ACT/365
GBP: > 1Y 0 Libor 6M ACT/365 6M ACT/365
JPY 2 Tibor 3M ACT/365 6M ACT/365
JPY 2 Libor 6M ACT/360 6M ACT/365
CHF: 1Y 2 Libor 3M ACT/360 1Y 30/360
CHF: > 1Y 2 Libor 6M ACT/360 1Y 30/360

A coupon period of a swap floating leg usually has separate date definitions for rate fixing and for

interest accrual. Figure 3.1 depicts a coupon period with typical definitions of dates. Detailed descriptions

of the dates are listed in Table 3.3. A coupon period of fixed leg possesses similar ingredients except that

the dates defined for rate fixing may be omitted.

Figure 3.1 One coupon period of a typical swap floating leg (e.g., the i-th period)

Table 3.3 Attributes of an IRS coupon period (e.g., the i-th of the total n periods)

attribute symbol description remark/example
accrual start date* | a; on which the accrual starts s =te, Qs = Aj_qe
accrual end date? | a;, on which the accrual ends aie = B(d.(M.Y — (n — )P))
payment date 1 on which the payment is made | p; = a;. @ 4,

Formula a; s = a;_4 . V i > 1 means the start date of current accrual period coincides (conventionally) with the end date of

previous accrual period.

2Formulad. (M.Y — (n — i)P) means we keep the roll day unchanged and only roll the month and year.
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index spot lag! Af spot lag of benchmark rate index | 2D
fixing date fi on which the index rate is fixed | f; @ A = a;
fixing start date? fis on which the fixing period starts | f;s = a; s
fixing end date® fie on which the fixing period ends | f; ., = B(fi,s + L)
accrual coverage* | ¢4 accrual period year fraction | ¢;o = 7(a;s aie)
fixing coverage® | c¢;f fixing period year fraction cif =7(fis fie)

In general, the schedule is worked out backwards for a front-stubbed swap. Assuming we have a
roll day d, the maturity date t,, given as D. M.Y (e.g., day.month.year) must be consistent with the roll
day d such that the business day adjusted roll day in the month of maturity coincides with the maturity
date, e.g., B(d.M.Y ) = D.M.Y. The maturity date also marks the end date of the last interest accrual
period. For the rest of the periods, their end dates can be deduced using the formula a;, =
B(d. (MY - (n-— i)P)) for i = nto 1, where before adjustment the roll day remains unchanged and the
month and year are rolled towards effective date by a period of payment/reset frequency P. In other words,
all the dates are first rolled (may result in an invalid date, like February 30) without adjustment and then
all the dates are adjusted. There will be a stub period in front if for the first period ¢, # B(d. (M.Y — nP)).
The reason the stub period is the first one is that once that period is finished, the swap has the same
schedule as a standard one. If the stub was the last period, the swap would never become a standard one.
Providing that all the a; . are available, the rest are trivial and can be deduced using the formulas provided
in Table 3.3. Note that the end date of fixing period f; . corresponding to the benchmark rate index can be
slightly different from the end date of floating coupon period a; .. The difference is created by the
adjustments due to non-good business days.

3.3. Interest Rate Swap: Valuation

L Index spot lag is the spot lag associated with the benchmark rate index. It is usually the same as the swap spot lag, e.g. both
are two business days.

2 Fixing start date usually coincides with the accrual start date within a coupon period.

3 The L here denotes the tenor of the rate index. The business day adjustment B(-) may vary for the accrual end date and for
the fixing end date.

4 The r(ai‘s, ai‘e) is the year fraction between a; ; and a; , given by day count convention t(-).

> The day count convention 7(-) may vary for accrual coverage and for fixing coverage.
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In the most common fixed for floating (spot starting) interest rate swap, all the coupon payments
are calculated based on the same notional and all the coupons on the fixed leg have the same rate.

Following the notation, the present value of the floating leg of a vanilla swap can be calculated as

Vﬂoat(to) = Z Ci,aP(tO' pi)]Ei)oi [Z(fu fi,s’ fi,e)] ~ Z Ci,aP(tO' Pi)z(to' fi,s' fi,e) (49)

2 L

where p; and c; , are the payment date and coverage of the i-th accrual period of the floating leg, and the

forward Libor rate is estimated from the pseudo discount factor of the projection curve

) _P(t.fis) = P(t fre)
L(t fis fie) = corP(t fie)

for t<f; (50)

If we plug in the par swap rate S(t,) fixed at trade date t,, the fixed leg of the vanilla swap would have

the same present value of the floating leg, which can be calculated as

Visxea(to) = S(to) ) ¢1aP (to,1;) (51)
J

where p; and c; , are the payment date and coverage of the j-th accrual period of the fixed leg. Note that

the quantities associated with the floating leg and the fixed leg are differentiated by indices i and j

respectively.

to ts Ajs Ajer Ait1,s Di
Ag Ci,a Ay
Figure 3.2 The i-th coupon period of a swap with a composition Libor index floating leg
Some swaps are also traded on a compounded basis that aligns the payment of floating leg and
fixed leg to reduce the credit risk. For example, as depicted in Figure 3.2, a trade that swaps 1M Libor
versus 3M fixed coupon can be quoted with the 1M Libor compounded over three 1M periods and paid

quarterly in line with the 3M period. The quantity V;(t,) below is the t,-value of the 1M Libor interest
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accrued in the first 1M period and paid at the end of the 3M period. a; s = a; s and a;;,, = a;. The p;
is the payment date of the j-th fixed coupon and usually we have p; = a;, = a;,, .. The PV of the swap

can be approximated by

i+2
V(tO) _bjls - ' ~
Nci,ap(to,pj) - Eto lL(ﬁ; fl,s; fl,e) kl;ll (1 + Ck,aL(fkl fk,sr fk,e))“

i+2 A
pj (fkiak
=~ ]E J lL(ﬁ ﬁs ﬁe) 1_[ S ]’ assume fk,S = ak,S’ fk,e — ak,e

k=i+1 (fk'ake
[EaH_Ze i ] A(fk: aks A
~E, (fl fis fle) 1_[ ( , assume P(ai+2,e,pj)1s independent
| k=i+1 fre ake
_ EaHZe [ (f f f P(fl-l—ll Ait1,s l P(ﬁ+1' a1+25) _ plitze lp(fl+2'a1+2$ l
fo | vabsILe P(fl-l—ll A2 e) P(fl+1' a1+29) Tiva P(fl+21al+2 e)
P(to al+1s al+1$[ P(ﬂ+1’ Aiy1 S) l
_\NOTLS) e — " plajq . a;
P(to al+2€) to (fl flS fle)P(fi+1;ai+2,e) (al+1,5 al+2,e)

52
P(to al+15) a1+1s ( )

P(to Qisze) Fo [L(fi, fis: e )N (fists Qivrsr Qivae)]

P(to Ai+1 5) al+1S

P(to Qitze) Ee [L(fo fis: ﬁe)][Eal+1s[77(]ci+1'ai+1,s' Qivze)],  assumel; L7

. P(tor ai+1,s)

- P(to, Gitze) L(to. fis fie)N(tor Qi1 Ginze)s Y Givas = fie

_ P(to'ai+1,s) P(tO'aHZ,e) p(tO'ai+1,s)

= L(to fis f —
P(to'ai+2,e) ( oL le) P(to'ai+1,s) P(tO'aHZ,e)
- ﬁ(tol ai+1s)
e L i T A—'
(to fl,s fl,e) P(to, ai+2,e)
~ to, a
= V(to) ~ Nci,aL(tOin,s'fi,e) ( o l+15) (tO p])
P(tO Ait2 e)

3.4. Forward Rate Agreement
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Forward Rate Agreement (FRA) is a forward contract traded over-the-counter (OTC) between two
parties to lock in a forward rate today, for money they intend to borrow or lend sometime in the future. It
can be simply taken as a one-period forward starting fixed for floating interest rate swap. At trade date,
two parties enter into a FRA to agree on a coupon rate, a start period and a reference index. For example,
an n X m FRA (reads as “n-against-m-month” FRA) contract has a start period of nM and an end period
of (n + m)M, which is the start period plus the index tenor (i.e a 1M start period and a 6M tenor give a
7M end period). The accrual start date (accrual end date) is computed from spot date by adding the start
period (end period) and then adjusted by business day convention. The fixing start date coincides with the
accrual start date. The fixing end date is computed from the fixing start date by adding the index tenor
(= mM) and then adjusted by business day convention. The fixing date (or exercise date) is the spot lag
before the fixing start date. At accrual start date (i.e., value date, settlement date), the difference between
the coupon rate and the index rate is then discounted back from the accrual end date (i.e., maturity date)

to value date at the index rate and cash settled on the value date rather than the maturity date to reduce

credit risk.
f fs fe
LA L Cr |
. v Vo] t
T \
A i Ca |
to ts ag e
Figure 3.3 Schedule of a FRA
Table 3.4 Attributes of a FRA contract
attribute symbol description remark/example
trade date to on which the FRA is traded today
spot date ts trade date plus index spot lag | ts = to D Ay
index spot lag Af spot lag of reference index 2D
accrual start date? ag on which the accrual starts as = B(ty + nM)
accrual end date? ae on which the accrual ends a, = B(t; + (n+ m)M)

! Start period is usually specified in number of months, e.g. nM.
2 The tenor of rate index is mM.
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fixing date f on which the index rate is fixed | f @ Ar = as
fixing start date fs on which the fixing period starts | f; = ay
fixing end date* fe on which the fixing period ends | f, = B(f; + L)
accrual coverage Ca accrual period year fraction c, =1(as a,)
fixing coverage Cr fixing period year fraction cr = 1(fs fe)

The FRA is settled at f; with a payoff

Neao (L(F, o £2) = Rera(®))

= (53)
L+ col(f fo fe)

where Rgra (t) is the contractual FRA rate fixed at time t. Since the rate L(f, £, f.) has been fixed at f,
the payoff settled at £ is equivalent to the same payoff discounted by P(f, f;) and settled at f, the time ¢t

value of the FRA would be

Vera(t) = P(t, f.)EF

Newo (L(f o £2) = Rera(®) P(F, £)
1+ coL(f fi ) P(f. fe)

T 1 L yJsr Je
= NwP(t, f,)Ef [ca (BCF fo f) = Rera () - :f zgc ; ’; ;] (54)
1 L yJsr Je
= NoP(t, f,) (1 +¢/L(t £ £2) — (1 + coRera(6) )L L sz]:g ]; ;;D

An equilibrium FRA rate would give a vanishing initial value and hence

_ i 1+ CfL(tlf:S"fe) _
RFRA(t)—Ca — 1+ch(f,fs,fe)] 1
)

C L+ clL(f fo fe

(55)

The expectation of the ratio depends on the joint distribution of the rates. We may assume shifted

lognormal martingales for the two rates L(f, f;, £.) and L(f, f., f.) under f,-forward measure

A1+l fuf)) o d(1+eltfif)

= w.’e, =
1+ ceL(t, fs fe) t 1+ c Lt fs, fe)

='dwle, awfedw/e’ = pdt (56)

! The L here denotes the tenor of the rate index, e.g. L = mM.
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which have simple solutions like

1+ ceL(f foo fe) = (1 + ch(t,fs,fe)) exp (0’(Wf — Wt) — %a’pa(f — t))

(57)
- - 1
1+ CaL(fJ fSJ fe) = (1 + CaL(t»f:srfe)) exp <6,(Wf - Wt) - Eé\-lpa-(f - t))
The expectation can then be estimated
fe 1+CfL(fJfSer)l _ 1+CfL(tff:€'fe) NP _
. [1 el oo f) - T okt o o PO PO T D)
1 -

= Rena(®) = —((1+ cal (6. £, 1)) ex0(3'p (6 — ) — ) ~ 1)

1 -
~ C_((1 ol (6 fof)) (14898 — 0)(f — 1)) - 1)

¢ (58)

- é(l + oLt fo o) + (1 + cai(t,fs,fe)) 6'p(6—a)(f—1t) — 1)

= (calt, fo /o) + (14 €Lt ) 606 — o) 1))

Ca
~ Lt fo fo) + (14 cal(t £ 1)) 6'p(6 — )

where the extra term exp(&’p(& —o)(f — t)) is the convexity adjustment. For typical post credit crunch
market situations, the actual size of the convexity adjustment results to be below 1 bp, even for very long
maturities [2].
3.5.  Short Term Interest Rate Futures

Specifically, we discuss the Libor based short term interest rate (STIR) futures that are traded at
exchanges and subject to margining process. The instruments share the same settlement mechanism but
differ in notional, underlying Libor index and exchange where they are quoted. One typical example of
the STIR futures is the Eurodollar futures (EDF), which is based on 3M USD Libor rate, reflecting the
rate for a 3-month $1,000,000 notional offshore deposit. EDF is basically the futures equivalent of FRA

that allows holders to lock in a forward 3M Libor at an earlier time. Because EDFs are exchange-traded
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standardized instrument, they offer greater liquidity and lower transaction costs, despite cannot be
customized like FRA’s. Furthermore, EDFs are marginated, there is virtually no credit risk, as any gains

or losses are daily settled.

ok £
- Af ;L Cf ‘I
S e YO :
! } ; '
| dailysettled | Ay oz T >
Lo f to

Figure 3.4 Schedule of Eurodollar Futures

Table 3.5 Attributes of a Eurodollar Futures contract

attribute symbol description remark/example
nominal amount N used for margin calculation $1,000,000
trade date to on which the EDF is traded today
rate index L underlying rate index 3M USD Libor
index spot lag Af spot lag of reference index 2D
settlement date te start date of underlying Libor | t, = f @ 4y

index fixing date? f on which the index rate is fixed | f @ Af = f;
fixing start date fs on which the fixing period starts | f; = t,
fixing end date fe on which the fixing period ends | f, = B(f; + L)
accrual factor Ca 90 days in Actual/360 convention | ¢, = 0.25
fixing coverage Cr fixing period year fraction cr =1(fs fe)

There are 40 quarterly EDF contracts, spanning 10 years, plus 4 more for nearest serial (non-
quarterly) months that are listed at all times. The quarterly EDF contracts have delivery months of March,
June, September and December. Of each contract, the final settlement day is the third Wednesday of the
settlement month. The last trading day is two business days prior to the final settlement date. The EDFs
are quoted in terms of the “IMM index”. From the point of view of the counterparty paying the floating
rate, the price at time t reads 100(1 — REDF(t)) for a traded futures rate Rgpp(t) (e.9., quoted at 99.25

for Rgpp(t) = 0.75%). Upon fixing date f, the futures rate must converge to the official fixing of 3M

! Index fixing date is also the last trade date. The EDF contract is daily settled between the trade date and the fixing date.

30



Libor rate such that Rgpp(f) = L(f, fs, o), and hence the final settlement price becomes 100 (1 -

L(f fof).

In order to provide a rule to compute the margin for the futures contracts, the value of the EDF

contracts is defined as

Vepr(t) = Ncg(1 — Repr(t)) = $250,000 X (1 — Repe(t)) (59)
Namely, one basis point (0.01%) fluctuation in futures rate would result in $25 movement in the contract
value. For a given closing price Rgpr(t) (as published by the exchange), the daily margin paid for one
EDF contract can be calculated as the closing price minus the reference price Rgpr(t — 1) multiplied by
the nominal amount and then by the accrual factor

Agpr(t — 1,t) = Vgpp(t — 1) — Vgpp(t) = Neg(Repr(t) — Repr(t — 1)) (60)
where the reference price is the trade price on the trade date and the previous closing price on the
subsequent dates. Because the daily settlement mechanism of EDF, market quote of EDF is slightly higher
than that of FRA. To infer forward rates from EDF rates, it is necessary to make convexity adjustment,
which can be quantified by forward-futures spread as discussed in section 0. The exact value assigned to
the convexity adjustment however depends on a model of future evolution of interest rates. This will be
discussed in more details in the following chapters.
3.6.  Overnight Index Swap

The overnight indexed swaps (OIS) exchange a leg of fixed payments for a leg of floating

payments linked to an overnight index. Table 3.6 list the overnight indices of the four major currencies.
The start date of the swap is the trade date plus a spot lag (e.g., most commonly two business days). The
payments on the fixed leg are regularly spaced. Most of the OIS have one payment if shorter than one year
and a 1Y period for longer swaps. The payments on the floating leg are also regularly spaced, usually on
the same dates as the fixed leg. The amount paid on the floating leg is determined by daily compounding

the overnight rates. The payment is usually not done on the end of period date, but at a certain lag after
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the last fixing publication date. The reason of the lag is that the actual amount is only known at the very
end of the period; the payment lag allows for a smooth settlement. Table 3.7 shows typical OIS
conventions for major currencies. Figure 3.5 and Table 3.8 depict one coupon period of OIS floating leg.
It is assumed that there are in total K overnight rate fixings in the i-th coupon period. Clearly, we have
ajs = dysand a;e = dge.

Table 3.6 Overnight indices of the four major currencies

Currency Name Day Count Convention | Publication Time
USD | Effective Fed Funds ACT/360 morning of end date
EUR EONIA ACT/360 evening of start date
JPY TONAR ACT/365 morning of end date
GBP SONIA ACT/365 evening of start date

Table 3.7 Overnight index swap conventions

Fixed Leg Floating Leg
Currency Spot Lag! | Frequency Convention | Reference Frequency Convention Pay Lag?
USD<1Y 2 tenor ACT/360 | Fed Fund tenor ACT/360 2
UsD > 1Y 2 1Y ACT/360 | Fed Fund 1Y ACT/360 2
EUR <1Y 2 tenor ACT/360 EONIA tenor ACT/360 2
EUR > 1Y 2 N ACT/360 EONIA 1Y ACT/360 2
JPY <1Y 2 tenor ACT/365 | TONAR tenor ACT/365 1
JPY > 1Y 2 N ACT/365 | TONAR 1Y ACT/365 1
GBP<1Y 0 tenor ACT/365 SONIA tenor ACT/365 1
GBP > 1Y 0 1Y ACT/365 SONIA NG ACT/365 1
d,lc,s dk,,e
e S T T [ A TAU £,
]._.T, .............. L p
A | C; | A, |
tO ts a;s aie pi

Table 3.8 Attributes of an OIS floating coupon period (e.g., the i-th of the total n periods)
attribute symbol description remark/example

accrual start date ais start date of i-th period similar to vanilla IRS

! The spot lag is the lag in days between the trade date and the swap start date.
2 The pay lag is the lag in days between the last fixing publication and the payment.
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accrual end date Ao end date of i-th period similar to vanilla IRS
accrual coverage® | ¢; coverage of i-th period ¢ =t(ais aie)
payment date D payment date of i-th period pi =a;. DA,
number of fixings K total number of fixings in i-th period | 1 < k <K
fixing date dy publication date of k-th O/N rate | dy = dy s or dy,
fixing start date di s start date of k-th O/N rate dis = dy-1e
fixing end date die end date of k-th O/N rate dpe =dys® 1D

Following the notation in Figure 3.5, the present value of the i-th period of the OIS floating leg

can be calculated as

Vioat,i (to) = P(to'Pi)[EZf [r (1 +1(dis dis dice)T(dics, dk,e)) - 1]

k

= P(to, ai,e)E?;'e P(ai,e: pl) “—[ (1 + T(dk'f, dk,Sl dk,e)T(dk,Sl dk,e))
L k

— P(to,p) (61)

e P(dy. s, dx,
= P(tOJ ai,e)]E(tlo P(ale' pl) Hp(dkf; dk: ] P(tO' pl)

Where r(dk,f, dis) dk,e) is the overnight rate fixed at d,,  for one business day period from d s to dy .

Its value must be consistent with the discounting curve and can be estimated from the curve by

P(dy s, dys) — P(di s, dye)

dicfs diessr Are) =
e s Bie) = =510 e Ve )

(62)

By assuming independence (i.e., ignoring the small convexity) between P(ale,pl) and K- 1%
k.frk,e

the (61) simplifies to

Viioati(to) ~ P(tO' a; e)[E le[P(ale:pl)]IEale

ﬁ P(dy s dys)
L LP(di s die)

ﬁp(dk,f, dk,s)] — P(to, py)

L LP(diy die)

(63)

Qie

- P(tOI pl)[E - P(tO' pl)

! Most OIS have one payment if shorter than 1Y and a 1Y period for longer swaps. Payments on floating leg are also regularly
spaced, usually on the same dates as the fixed leg.

33



where the expectation can be estimated as follows by repeatedly using the tower rule

Qie P(dkf’dks ] ale[ aLe IP(dKJf’dK:S)] P(dkf’dks ]
fo P(dk £rlie) fo | =1r | P(dy s, dK,e) P(dk frdice)
_ ]Eai’e -P(dK 1,17 dg s) 1_[ P(dk fr dks
fo _P(dK—l,f' i) P(dk £rdie)
aie | e [P(di-1pdics) P(di—s di-15)|T P(dk £ dies)
=E, d (64)
0 | K-2f P(dK—l,f'ai,e) P(dk—l,f» dK—l,e) P(dk f'dk e)
_ e P(dg_yf dy—1,5) np(dkf:dks ] B
fo | P(dK—Z,frale P(dkf:dke
_ e _P(dz( Lfr dig— z+1 s) 1_[ P(dk £rdis) _ P(ty a;s)
fo | P(dK—l,fr ale P(dkf' dke P(tOfai,e)
Finally, the present value of the i-th period of the OIS floating leg is
P(to, a; S) )
Vitoati(to) = P(to,p) | ———% — 1 65
ﬂoat,t( 0) ( 0 pl) (P(to,ai,e) ( )
and the present value of the j-th period of the OIS fixed leg is
Viixed,j (to) = R(to) 2 T(aj,s: aj,e)P(tm Pj) (66)
J

where R(t,) is the OIS swap rate observed at t,,. The par swap rate for a single payment OIS with i = j =

1 would be

P(to, ai,S) - P(to, ai,e)
P(to, ai,e)T(aj,s, aj,e)

Vﬂoat,i(to) = Vfixed,j(to) = R(to) = (67)

If multiple payments are involved, the par swap rate would be

P » Uis
Vﬂoat(to) =~ ZL P(tOr pi) <PEZZ,—ZL:3 - 1) ’ Vfixed(to) = R(tO) Z T(aj,s' af.e)P(tO' pj) (68)
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i P(to, pi) <—£gz’ Z%’S% - 1)

= R(ty) =
’ % 7(as a5 )P(to, 1))

As mentioned before, in overnight index swaps, the coupon periods and the day count conventions in
general coincide for both floating and fixed legs. However here we still use sub-script i and j to
differentiate the quantities of the two legs.
3.7.  Interest Rate Tenor Basis Swap

The floating-for-floating tenor basis swaps (IRBS) exchange two floating legs in the same
currency, tied to two Libor indices of different tenors. The quoting convention is to quote the spread on
the shorter tenor leg (e.g., denoted by index i), in such a way that the spread is positive. Following the

notation in section 3.2, the present value of the two legs are

Vshort_tenor(to) = Z(i(to; fi,s' fi,e) + .U)Ci,ap(tOJ pi)

l

(69)
Vlong_tenor(ts) = Z Z(tOJ fj,s' fj,e)cj,ap(tsr pj)

J

For example, suppose you trade a swap USD Libor 3M vs USD Libor 6M quoted at 12 (bps) for
ten millions paying three months Libor. You will pay on a quarterly basis the USD Libor three months
rate plus the spread of 12 bps multiplied by the relevant accrual factor and the notional and receive on a
semi-annual basis the USD Libor six months rate without any spread.

This is the conventions for almost all currencies, with the notable exception of EUR. In EUR, the
basis swap are conventionally quoted as two swaps. A quote of Euribor 3M vs Euribor 6M quoted at 12
(bps) for ten millions paying the three months has the following meaning. You enter with the counterpart
into two swaps fixed against Euribor. In the first swap you receive a fixed rate and pay the 3M Euribor.
In the second swap, you pay the same fixed rate plus the 12 bps spread and receive the 6M Euribor. Note

that with that convention the spread is paid on an annual basis, like the standard fixed leg of a fixed versus
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Libor swap. Even if the quote refers to the spread of a 3M versus 6M swap, the actual spread is paid

annually with the fixed leg convention.

Vﬂoat(ts) = - Z Z\'1:5,1'Ci,ap(il:s' pi) ’ Vfix(ts) =S Z Ck,aP(ts' pk)
i k
Vfix(ts) = _(S + U) Z Ck,ap(ts' pk) ’ Vﬂoat(ts) = Z its,jcj,ap(ts' pj) (70)
k J

Viioat (ts) = z L jciaP(tsp;) — z L; icioP(ts, pi) — HE Cr,aP (ts, Dk)
7 i i

The composition of Libor index described in section 3 is not restricted fixed for Libor swaps. Some
basis swaps are also traded on a compounded basis to align the payment on both legs. For example a basis
swap one month Libor versus three months Libor can be quoted with the one month Libor compounded
over three periods and paid quarterly in line with the three months period. Note that the exact convention
on the spread compounding needs to be indicated for the trade. The composition of the shorter tenor leg
is currently the standard in USD.

3.8.  Floating-Floating Cross Currency Swap

The most common cross currency swaps exchange two floating legs that are linked to Libor indices
of the same tenor [4]. The notional of the two legs differs as they are in different currencies. The notional
on one leg is usually the notional on the other leg translated in the other currency through an exchange
rate. The rate is often the exchange rate at the moment of the trade as agreed between the parties. The
notional is paid on both legs at the start and at the end of the swap. In each period, one leg pays Libor flat
(usually USD) and the other pays Libor plus a fixed spread. The swap is known as constant notional cross
currency swap (CNCCS) as the initially agreed notional amounts of both legs stay unchanged throughout
the lifetime of the swap. However, in view of the elevated credit exposure due to deviation in exchange
rate, markets (especially in G10 currencies) are in favor of cross currency swaps with exchange rate reset,

known as mark-to-market cross currency swap (MtMCCS). In such swap, the notional of the leg which
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pays Libor flat (usually USD) is reset at the start of the Libor calculation period based on the spot exchange
rate at that time. The notional and spread of the other leg is kept constant throughout the contract period.

3.8.1. Constant Notional Cross Currency Swap

The CNCCS, e.g., a EUR (denoted by X) for USD (denoted by $) swap, is generally collateralized
in USD. The market quotes the cross currency swap in term of a basis spread u applied to the EUR leg.
The notional Ny and Ny are determined by the spot exchange rate Sx(t,) fixed at t,. The EUR leg and

the USD leg can then be valued at par using the formula below

Vy(to) = Nx | —Px(to,te) + Px(to, tm) + Z(ix(to'fj,s,fj,e) + .u)cj,aPX(tO'pj)
J

71
Vs(to) = Ns <—P$(to, te) + Ps(to, tm) + Z £$(t0ffi,5ffi,e)ci,ap$(t0'pi)) -
i
Ns = NxSxs(to)
where P¢(t, T) is the USD OIS discounting curve and Px(t, T) is the CSA discounting curve. Given a
term structure of the basis spread u, we are able to bootstrap the CSA discounting curve Py (t, T) that
discounts cashflows paid in EUR but collateralized in USD.

3.8.2. Mark-to-Market Cross Currency Swap

The MtMCCS differs from CNCCS by resetting the notional on USD leg at start of each coupon
period. The nature of the notional reset on USD leg allows us to view the MtMCCS swap as a portfolio of
forward start (except for the first period, which is spot start) single period cross currency swaps. For

example, at start of the i-th period, the USD leg pays NySxs(f;) amount at a; and receives
NxSxs(f7) (1 + ci,aig;(ﬂ,ﬂjs,fl-,e)) at a; .. This translates into the following valuation formula for the

USD leg

VsCto) = ) Ps(to, i) Bt [N(f) (1 + cials(fi fis fie))| = Ps(tor ) EC NG (72)
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= Ny Z Py(to, FOBL [Sus(D) (Ps(foaie) (1 + cuals(f fisn o)) = Ps(fiais) )|
~ Ny Z EL[Sxs(F1Ps (o FOEL |Ps(fisaie) (1 + coals(fi fis fie) ) — Ps(fir i)

~ Ny Z Fys(to, fi) (P$(t0» ai,e) (1 + Ci,az$(t0»fi,s»fi,e)) - P$(t0' ai,s))
7

where Ny is the constant notional on EUR leg and the resetting notional on USD leg is given by Ng(t) =
NxSxs(t). There are two approximations in (72). The first comes from an assumption that the exchange
rate Sx(t) is independent of rates (of course this will introduce convexity, but normally it is small). The
last is negligible and is resulted from ignoring the time difference between a; ., and f; .. The EUR leg has

a constant notional and hence retains the same expression as in (71)

Vy(to) = Nx | —Px(to,te) + Px(to, tm) + Z(ix(to'fj,s,fj,e) + .u)cj,aPX(tO'pj) (73)
J
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4. INTEREST RATE CAP/FLOORS AND SWAPTIONS

In this section, we introduce two main rates instruments liquidly traded in the markets: Cap/Floors
and Swaptions. To be more illustrative, the introduction will rely on a simplified single-curve based
definition of fixed-to-floating interest rate swap commonly found in many textbooks. The multi-curve

based version varies slightly and will be introduced in due course in the subsequent chapters.

T, Ta+1 Ti—q T; Tp-1 Ty
Figure 4.1 Simple schedule definition of a floating leg

Let us consider a sequence of dates, i.e., a payment schedule T, < Tyy; < -+ < Tp—1 < T}, SUch
that the time points are approximately equally spaced by a fixed period, e.g., 3M. A forward Libor rate
L,; Vi=a+1,-,bprevailing attime t < T;_; is associated with a FRA that starts at T;_, and matures

at T; for a period from T;_; to T;. By (43), the forward Libor reads

P — Py

Le;
t,i
Pt,iri

(74)

where 1; denotes the year fraction between T;_; and T; given by a day count convention (e.g., Act/360).
The forward Libor L, ; becomes a spot rate L;_; ; when t = T;_;. Since both numerator and denominator
are traded assets, the L, ; is a martingale under Q' associated with numeraire P, ;

Ly = Pri-a = Pri _ Ei [1 - Pi—1,il _ [

Py Pi_1,T; {USH (79)
An interest rate swap (IRS) is a contract that exchanges payments between two different (e.g.,
fixed/floating) interest rate payment legs. Atevery instant 7; Vi = a + 1,---, b, the fixed leg pays out the
amount ;S corresponding to a fixed rate S, whereas the floating leg pays the amount 7;L;_,;
corresponding to an interest rate L;_ ;, €.9., the i-th period spot Libor fixed at T;_;. When the fixed leg is

paid and the floating leg is received, the IRS is called Payer IRS, whereas in the other case it is called

Receiver IRS. For simplicity, we have assumed that the same schedule applies to both floating leg and

39



fixed leg of the swap. We also disregarded the difference in schedule definitions for interest accrual and
for rate fixing. However, proper implementation must take these into account. It has been discussed in
detail in chapter 3.

Given an IRS spanning a period from T, to T}, (i.e., the first value date and the last maturity date,
respectively), the swap rate becomes at par if it makes the present value of the fixed leg and the floating
leg equal, such that

b b
S0 Y Puti= ) Puitiles = Poa = Pop (76)
i=a+1 i=a+1

where the par swap rate can be calculated as

1—T7T° ;
ab _ Pra =Py _ STl 4 gLy,
S = b - (77)
Yimar1 TiPei b 7; [T — 1
i=a+1 "t llj=a+11 4 Tth,j

Note that if present time t < T,, the swap is forward starting, whereas if t = T,, it becomes a spot starting
swap.
4.1. Caps and Floors

Caps/floors and swaptions are two main OTC derivative products in the interest rate markets. The
caps and floors at time t are baskets of European calls (i.e., caplets) and puts (i.e., floorlets) on forward
Libor rates for a period from T, to T,. If t < T, (here we ignore the spot lag), it is called forward start
cap/floor, whereas if t = T, it is called spot start cap/floor. For example, a 10-year spot start (t = T,) cap
struck at K consists of 39 caplets each of which expires at the beginning of each 3M rate period of today’s

date. The first 3M period T, ~T,, is excluded from the cap because the spot Libor rate L, 4 is already

known and fixed. The cap buyer receives payment Ti(Li_Li - K )+ at the end of each rate period (except
for the first period for a spot cap). According to risk neutral pricing theorem in (8), the cap price is the

expected discounted payoffs under Q
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b

| 1 + 1 ift <T,, forward cap
CAP _ —1(L: .. — = a
Vt,a,b - ]Et Mt z Mi Tl(Ll—l,L K) ’ k {2 ift = Ta , spot cap
i=a+k
b ‘M b p
~ t + : t,i +
= Z ]Et ﬁri(l'i—l,i — K) ] = z ]Etlg lP_-I-'Ti(Li_l'i - K) l (78)
i=a+tk " i=a+k bt
b
; +
= Z P Bt [(Li—l,i —K) ]

i=a+k
where we have changed the numeraire, according to (24), from a money market account M, to a zero
coupon bond P, ; maturing at T;. The market standard for quoting prices on caps/floors is in terms of
Black’s model, a variant of the Black-Scholes model adapted to handle forward underlying assets.
Because, as previously mentioned, L, ; is a martingale under the T;-forward measure Q, it is assumed that
L. ; follows a driftless geometric Brownian motion under Q' with a deterministic instantaneous volatility
oy ;, that is

dL; = Lt,iUt,ithi (79)

In general, the market quotes cap (floor) prices in terms of spot start caps (floors). Hence, the cap

price at t can be computed by the following sum of Black formulas, each for a caplet

b
VAP = Z Pit;B(K,L;;v;,1) for t=T, (80)

i=a+2
where the (undiscounted) Black formula B(-) is defined as
B(K,F,v,w) = wF®(wd*) — oK (wd™)

d+—ilo £+ﬁ and d‘—ilo E—ﬂ ey
Vo 8k 2 Vo Bk 2

with ®(+) denoting the standard normal cumulative density function and w € {1, —1} indicating a call or

a put. The v; is the total variance of T;_;-expiry caplet defined as

Tiq
v; = j ol du (82)
t
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and the caplet volatility is given by o; = /T ul -
i-17

An spot cap/floor maturing at T, is said to be at-the-money (ATM) if strike K = Sf:Tla'b, which is
the forward swap rate implied from a zero curve for a period from T,,, to T, (while t = T,). For
simplicity, the market convention is to quote cap/floor volatility in a single number, a flat volatility ;.
This is the single volatility which, when substituted into the valuation formula for all caplets/floorlets,
reproduces the correct market price of the instrument, that is

b b
Z P.itB(K,Ly;, 67 (Ti-y — 1),1) = Z Pt B(K, Ly ;v 1) (83)

i=a+2 i=a+2
Clearly, flat volatility is a dubious concept: since a single caplet may be part of different caps it gets
assigned different flat volatilities. The process of constructing implied caplet volatilities from market cap
quotes will be discussed as follows.

The market convention quotes the cap/floor price in Black flat volatilities a,, where the cap
maturity T, usually takes integer value of years from 1 year up to 30 years. Let us assume the present time
t = T, for spot caps, and we have quarterly resets, so the effective date of the caps is T,,; = 3M and for
a 1 year cap its payments are made at times, Ty, = 6M, T,.3 = 9M and T,,, = 1Y, respectively. In
order to bootstrap the caplet volatilities for the periods shorter than one year, we need to make some
assumptions. We generate two additional caps covering the periods Ty1~T44, and Ty 1~T,4 3. SUppoSe
that the volatilities are ATM, the strike prices for these caps equal to the appropriate forward swap rates,

K, = St“;}tb Vb =a+2,a+ 3,a+ 4, which can be obtained directly from a zero curve. However, we

have no cap volatilities for the two additional caps. To obtain these values, one can use constant
extrapolation (or any other appropriate extrapolation method). So we may assume that ,,, = 6,43 =
0444 Where a4 IS known and is the 1 year cap volatility. For the broken periods greater than one year

(e.g., Ts = 1Y3M) we will be obliged to interpolate (usually using linear interpolation) the market quotes
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for cap volatilities. Once the whole cap volatility term structure is recovered, we are ready to bootstrap
the caplet volatilities [5].
Recall that the spot cap price can be computed by (80)

Vs = Z PetB(Kys Leg, 5 (Ticy — £),1) (84)

i=a+2

The bootstrapping is merely using the following equation to recursively compute the caplet volatilities

starting fromb = a + 2

Pyt B(Kp, Lt Vp, 1)

b - (85)
= z Pt B(Ky, Ly, 05 (Tieg — £),1) — Z Pt B(Kp, Ly, v, 1)
i=a+2 i=a+2
For example, we begin with b = a + 2 to compute the v, ., of the caplet for rate L; 4., we have
Pt,a+2Ta+2%(Ka+2: Lt,a+2: Va+2, 1) = Pt,a+2Ta+223(Ka+2' Lt,a+2' 5£+2\/ Ta+1 -t 1) (86)

This gives vy, = 62,51/ Tar1 — t. Given the calculated v, ,,, we can further find v, for rate L; 4,5
such that the following equation holds

Pt,a+3Ta+393(Ka+3' Lt,a+3' Va+3» 1)

a+3 (87)
= z Pt,iTi%(Ka+3: Li,6443(Tiq — 1), 1) - Pt,a+ZTa+ZSB(Ka+3' Lt a42,Vas2s 1)

i=a+2
A univariate nonlinear equation solver is needed to solve (87) for v,,5. Given that v,,, and v, 5 are
calculated, we are able to uncover v, , for rate L, 54, and so on. By repeating the procedure recursively,
we will be able to recover all the caplet total variance v; Vi =a+ 2,---,b (and therefore the caplet
volatilities).
4.2.  Swaptions

Interest rate (European) swaptions are options on a payer/receiver IRS (called payer/receiver

swaption, respectively). Usually the swaption maturity T coincides with the first reset/fixing date of the

43



underlying IRS (ignoring the spot lag). The underlying IRS length, say from T, to T, is called the tenor
of the swaption. The set of reset/fixing and payment dates of the underlying IRS is sometimes called the
tenor structure. For example, a 1Y — 5Y (“1 into 5”) payer swaption with strike K gives the holder the
right to pay a fixed rate K on a 5 year swap starting in 1 year. A payer swaption is either cash settled or
swap settled at its first reset date T, of the IRS, which is also assumed to be the swaption maturity date.
The payer swaption value (e.g., swap settled) at time ¢ is therefore the expected discounted payoffs under

risk neutral measure Q

VES = —(Z Prit(Ly; — K)) = E, [AAZ 5‘”’—1{) Z PTlTl]

i=a+1 i=a+1
(88)
_ S % ab AT ab| _ mab A?'b ab A\ gab| _ jabgab[fcab _ N\
=B |37 (57 = K) 45" | = B2Y |G (577 — K) AT | = AP |(s#? - k)]
T

where we have changed the numeraire from the money market account M, to the

b

Aa,b — Z TP — Z (89)
' b H a+1(1+TJLtJ)

i=a+1 i=a+1

which is called annuity. Since the forward swap rate S,f"b is given by a market tradable asset (Pt,a — Pt,b)
denominated in a numeraire A?'b, it is a martingale under a measure Q®? (called swap measure) associated
with numeraire A%?. Similarly it is assumed that S*” takes a driftless geometric Brownian motion under
Q%" with a deterministic instantaneous volatility ¢”

ds;zb Sab adeab (90)
This model is known as the swap market model (SMM). The payer swaption (PS) can then be priced by

the Black formula (81)
VES op = AZPB(K, S2P, v, 1) (91)

where v, ;, is the swaption total variance that relates to the instantaneous volatility of Sta'b by
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T
vit = [ (o) au @)
t

Again, a swaption is said to be ATM if its strike K = Sf'b.

Fundamental difference between the two main interest rate derivatives is that the payoff of
swaptions cannot be decomposed into more elementary products. Terminal correlation between different
rates can be fundamental in determining swaption price. The term “terminal” is used to stress the
correlation that is between the rates (e.g., L;—q,; and L;_ ;) rather than between infinitesimal changes in
rates (e.g., dL.; and dL. ;). Indeed, we can see from (78) that caps can be decomposed into a sum of the
underlying caplets, each depending on a single forward rate along with its marginal distribution. The joint

distribution of the rates however is not involved.
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5. CONVEXITY ADJUSTMENT

In interest rate modeling, convexity adjustment generally refers to a correction made to the
expectation of a stochastic process taken under different probability measures. This correction originates
from the extra drift as shown in (32) due to the change of measure (with the associated numeraire). It can
be seen that the extra drift is nothing more than a covariance of the underlying stochastic processes. In the
following, we are going to introduce three examples of convexity adjustment: 1) Eurodollar Futures 2)
Libor-in-arrears and 3) CMS Swap Rates [6].
5.1.  Eurodollar Futures

Previously we have briefly discussed the distinction between the FRA rate and Eurodollar futures
rate, which originates from the different settlement mechanism. Suppose there is a contract that pays a

cashflow of spot Libor L;_, ; at T;. According to (24), we have the following two martingales:

Vi | Li-1,i - Ve ~ [Li—1i
_— ]El | = E L-_ . d —=E [ ' ]

under the T;-forward measure and risk neutral measure respectively. We already know that the FRA rate
L;; = E{[L;_1;] and the Eurodollar futures rate L, ; = E[L;_4,], the convexity adjustment between the

two rates can be derived as follows

M; . [Li_4 i] ~ M, ~ Dy ;
L,.=—LTF HN=F L. ——|=F, |, =
t,i Pt'l t[ Ml t i—1,i Pt,lMl t -1, Pt'l

Ee[Li—1i(Dei — Pri)] 1.4 Ee[Li—1:Dei] — Ee[Lio1:]Ee[Dei]
Pt,i oo Pt,i

= Ee[Li1 ] + (94)

= Zt,i + _Vt [Li;):'.i' Dt'i]
i

This result is consistent with the conclusion in (38). Since L;_; ; and D, ; are usually negatively correlated,

the Eurodollar futures rate is slightly higher than the FRA rate.

5.2. Libor-in-Arrears
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Suppose there is a contract pays spot Libor rate L; ;,, atthe start date of the accrual period T; rather
than at its end date T;, ;. Assuming the cashflow has a present value of V,, according to (24) we have the
following martingales

Vi

Vi El Liiv1
Piiv1

—_—— 3
P, ‘ l P

L
— [E%+1 l l,l+1] (95)
Piiq

l = E{[Lii+1] and
under the T;-forward and T;,,-forward measure respectively. Let us define the forward Libor-in-arrears
rate Ly ;41 = IEl[ u+1] This rate is not a martingale under T;-forward measure and differs from the

forward Libor rate L; ;. = [E§+1[Li,i+1], where a convexity adjustment is needed to amend the gap. From

(95) we can easily derive

Peiv1 _ipq |Lii+n iv1 |Lii+1Priiv1
Liiv1 = P E¢ P = E¢ —p..
ti i1 i+l

= b+ pp [Pt =Pl )

ll+1
' (96)
P 0 =t l+1(Pt Li+1 ll+1) ]Ei‘[Li,l'+l(Pt,l',i+1 - Pi,i+1)]
_Ltl+1+P E¢ Lejvr + o
ti+1 t,ii+1
E[Liiv1Priv1] = Et[Liin |JELPris] VilLiis1, Piis]
ti+1 D = L — p,..
tii+1 tii+1
where we have used the following martingale
Peivi i [Puina] _
Prages = = B[ 421 — gl )
t,i i,i

To evaluate the convexity adjustment, we assume the Libor rate follows Black’s model with a
constant volatility
ALtiv1 = Lt i110141dW, l+1 (98)

for which we have the solution given start time s

, 1
Lij+1 = Lgitq €Xp (Ui+1Wil+1 - 5012+1Ti> (99)
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Since E[exp(acW7r)] = exp (%O'ZT), we can calculate the forward Libor-in-arrears rate as

L P i1 pi1 lLi'Hll _ ES Lypea (1 + TipaLiien)] _ Lsira t Tip BE[LF 1]
S+l Ps,i § Pi,i+1 1+ Ti+1L5,i+1 1+ Ti+1Ls,i+1
(100)
Lgiv1 + Tiv1l% 11 exp(0fiqTy) Tiva L5,
_ Lsit i+1Llgi+1 €XPOjy1 1 = Ly i+1%s,i+1 [eXp(Uinr1Ti) —1]

1+ 74105041 1+ 741Lgi41

The convexity adjustment is therefore given as follows

Ti L2,
Loirr —Lgirr = ————1 [exp(621T;) — 1] = L410lexp(0,Ty) — 1] (101)
' ' 1+ 7i49Lg544 '

where
Tiv1Lsiv1
= 102
1+ 7i41Ls 41 (102)
Taking first order expansion, we can approximate (102) by
Lgiv1 —Lsiv1 = Ls,i+190i2+1Ti (103)

5.3.  Constant Maturity Swap

The acronym CMS stands for constant maturity swap, which refers to a future fixing of a swap
rate. CMS rates are different from the corresponding forward swap rates. CMS rates provide a convenient
alternative to Libor as a floating index, as they allow market participants express their views on the future
levels of long term rates (for example, the 10 year swap rate).

CMS swaps are commonly structured as Libor for CMS swap. For example, in a Libor for CMS
swap, one leg pays a floating coupon indexed by a reference swap rate (e.g., the 10Y swap rate), which
fixes two business days before the start of each accrual period. The payments are quarterly on the Act/360
basis and are made at the end of each accrual period. The other leg pays a floating coupon equal to the 3M
Libor rate plus a fixed spread, quarterly, on the Act/360 basis. In some cases, the Libor leg of the swap

can also be replaced by a fixed rate or potentially another constant maturity rate.
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Using a swap rate as the floating rate makes this transaction a bit more difficult to price than a

usual Libor based swap. Let us start with a single period CMS swap (i.e., a CMS swaplet) which pays a

swap rate Sg'b at T,, for an accrual period from T, to T,,, where the dates definition is given as follows

CMS Tenor (e.g. 3M) |Tp
Figure 5.1 One coupon period of a typical CMS leg

In the above diagram, T,, denotes the start date of the reference swap (e.g., 1 year from now). This will
also be the start of the accrual period of the CMS swaplet. T;, denotes the maturity date of the reference
swap (e.g., 10 years from T, ). T,, denotes the payment day of the CMS swaplet (e.g., 3 months after T,,).
This will also be the end of the accrual period of the CMS swaplet. In the name of completeness we should
mention that one more date plays a role, namely the date (i.e., fixing date Tr) on which the swap rate is
fixed. This is usually two days (i.e., spot lag) before the start date T,, but in our example we shall neglect
its impact.

Given that the payment of S*? amount is made at T,, according to (24) we would have the

following martingales under risk neutral measure and T,,-forward measure, respectively

Vi o lsg"’l v, Sg"’l
= E, and —=EP = EP[sP (104)
Mt Mp Pt,p t Pp’p t[ a ]

Since the swap rate S>” is fixed at T,,, we may rewrite the first martingale as

Ye_g [ g, [k, [ | < b S, [ < [ e (105)
M, ¢ M, oM,

Note that in (105), the guantity S‘”’P p €an be regarded as a cashflow at time T, which is equivalent,

under risk neutral measure, to a cashflow of S at time T}, providing that the $%P has been fixed at T,.
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After changing numeraire (by (24)) from money market account M, to annuity A%” (as in (89)), the (105)

becomes

,b
Vt ]Ea,b [56‘11 Pa,pl

t a,b
Aa

(106)

Let us define the forward CMS rate S&” = EP[S$?], which obviously differs from the forward swap rate

SHP = EFP[SEP]. From (104) and (106) we can derive that

AabP AabP
,b ,b ,b b a,p b b ,b ,b
S¢P =Ep[Sg”] = Ef lsa AP, l Ef°[Sq”] + Ef ls“ <Aa”fp_1>l
a B
(107)
b
a "tp

The extra term in (107) is the CMS rate convexity adjustment, which can be decomposed into two parts

ab a,b AabP 1 a,b
E:” |Sq ab——l —E;
Aa Ptp Ptp

Sab(AabPap Aabptp)
Aab
a

,b ,b qa,b
— i Pt'a ]Ea [Sa,b (Aa,bP _ Aa,bP )] _ ]E?[Sg Pa!p] _ ]E? [Saa Ag ]
- t ) t, -
Pt,p A?'b “ t @p “ P Pt,a,p A?"(I;
(108)
_ Eg[Sa"Pap] — EE[Sa”|BE [Pap] _ EZ[Sa’AG”] — EE[Sa”]EE[4G"]
- P - Aa,b
tap ta
_ VE[Sa Pup]  VE[Sa’AG"]
P t,a,p A‘;’f
where the following two martingales have been used
Pt Aa,b Aa,b
Prap =5 IE“[ l =Ef[Rp] and A7 =7—=Ef [P“ = E¢[A5"] (109)
t,a t,a a,a

The (108) says the convexity correction can be attributed to two sources: 1) covariance due to the payment
delay and 2) the covariance between the swap rate and the annuity factor. Note that the first factor vanishes
if the CMS rate is paid at T, i.e., at the beginning of the accrual period.

5.3.1. Caplet/Floorlet Replication by Swaptions
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The CMS caplet/floorlet can be replicated using swaptions at different strikes. Firstly, we consider

a CMS caplet. Its payoff at time T for T < T,, and its value at initial time t are given by

VERR = Pro(SEP—K)"  and VP = PE [Pry (st - K)'] (110)
Similarly, we write a vanilla payer swaption payoff at T and its value at t by

VES = AZP(sEP —K)"  and VIR =AMPE[(sEP - k)] (111)

where A‘,_?'b is the annuity. So according to (24), the value of CMS caplet can be expressed as

P.
VP = P, rET [PT.P(S?b - K)+] = APPE” [AZ’,II; (Sg'b - K)+l
T
(112)
P Aa,b
= PopEl” [ s p— (577 = K)+] = gV + P (577 - )" (L - 1)
Ar” Fep gt

Convexity Adjustment

where we define variable g, = B, ,, /Aﬁ'b . The g,, can be approximated by G(Sff'b ) a function of the swap

rate S{f’b for t < u < T (Hagan 2003 [7] provides a few ways to construct the function). Hence the 2"

term in (112), i.e., the convexity adjustment (cc), becomes

+(G S;f'b
cc = P, ESP [(s;‘f'b ~K) <GE5‘”’; — 1)] (113)

The payoff can be replicated by payer swaptions. For any smooth function f, with f, = 0 we can write

fs forS > K

0 forS<K (114)

(S—K)'fy+ f:(s —x)*fldx = {

This can be proved by integration by parts as follows

oo S
(S—K)+f,;+f (S —x)*fydx = (S—K)+f,;+f (S —x)*f dx
S )
= (S—K)*fi + f (S —)*dfy = (S — K fi+ (S — )" LIS — f fldGs -0t (115)

) )
= (S—K)*fi— (S—K)*fi+ j £10(5 — x)dx = f o(s - x)df,
K K
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={f:g_fK=fS fOI‘S>K
0 forS§ <K

In fact, there exists a more general formula [8]. Suppose there is a particular payout A(S;), and suppose

that A(S;) is a smooth function. It is possible to replicate the payout from vanilla options by
oo a
AS) =A(a) + A (0)(S —a) + f (S —K)*A"(K)dK + f (K - S)*A"(K)dK (116)
a 0

where a is any conveniently chosen constant. This tells us that we can perfectly replicate a European
payout with an infinite portfolio of vanillas, plus a forward contract and a cash payment. The proof is

sketched below, again by integration by parts, starting from the right-hand side of (116)

A(@) + A'(@)(S — a) + f 00(5 — K)*A"(K)dK + f a(K — $)*A"(K)dK
a 0

o)

= A(a) + A'(2)(S — a) + f (S — K)*dA' (K) + fa(l( — S$)*dA'(K)
a 0

=A()+A (@S —a)+ (S —K)TAK)|R=e — fooA’(K)d(S - K)*

a

K = S A Sy f A — S)*
0

= A(a) + A'(@)(S — @) — (S — @) A’ (@) + fooA'(K)@(s — K)dK + (¢ — S)*A'(a)

. (117)
—f A(K)O(K — S)dK
0

S
= A(a) + A'(@)(S —a) + (@ = $)* — (S — a))A' () + f A'(K)O(S — K)dK
- faA'(K)@(K — S)dK
S
S S
= A(a) + A'(@)(S — a) + (a — S)A'(a) + f A'(K)O(S — K)dK + f A'(K)O(K — S)dK

a

S S
= A(a) + j A (K)(O(S—K)+0(K —S))dK = A(a) + J A'(K)dK = A(S)

a a
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An example of function A(S;) would be log S and we can replicate the payoff by

OO(ST—K)erK_fa(K—S) dK
0

St
logSTzloga+;—1—f e e

a

Let us choose the function £, to be

P o
fx - (x K) (G(S;l'b) 1>

G(x) G'(x) . G'"(x)(x—K)+2G'(x)

G IO M T CD

and substitute (114) into (113), we have

e = PeyEEY[f(S77)] = Pep L [(s;f'b ~K)fi+ [ (50— x) frdn
K

= P fiES” (52 = K)' | + Pey f FUEEP (58 - 2) "] dx

=gt(f,é ff de)

Hence from (112), the CMS caplet value becomes

VCAP =g.(1+ fK) %+ gtJ f”V

B G(K ) ® G”(x)(x—K)+ZG (%)
9 (5o | v GO

= G(K)VES + fwvt?,f(c"(x)(x —K) +2G'(x))dx

Assuming G (x) is a linear function of x, e.g., taking first order expansion of G (x) around Sf’b

G(x) ~ G(SFP) +G'(SE)(x = S&P) = G6'(x) = G'(SF?),  G"(x) =0

we have

VEP = g VER + G'(SEP) ((K — SEPWER + 2 J Vf,fdx)
K
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(119)

(120)

(121)

(122)

(123)



= g.VES + G'(S*P) ((K SEP)ALPE® [(s#P - K)| + AFPED zf (s¥b - x)+dxl>
| K

—gtV Y (Sab) (Aab]Eab[(K Sab)(sab_K) ]_I_Aab]Eab ((S?,b_K)+)2]>
B + (5P AE (52 - 5258~ )

Similarly, by defining receiver swaption value V, Aab]E‘”’ [(K Sab) ] we have the CMS floorlet

value

VELR = g VRS +gt(fx j £, de)

(124)
= gV — G (SP7)AZPEL? (58 - s7) (K — s0) ]
Using put-call parity, the CMS swaplet value can be computed as
VI = VERP — VR = Pop(SE° — K) + G'(SE) AR B [(537 - SE0) (58 - K)]
, (125)
= P50 = K) + G'(S2) A BR? (537 — 52|
where we have used the fact that S7° = E{?[S]. When K = 0, it reduces to
VSWP_PtpSab_l_G(Sab)AabIEab[ ab) ]
(126)
G' (Sa b)
Sa'b — Sa [Eab ab
=t st s o L -]

Note that by assuming G (x) is a linear function of x, the convexity adjustment is determined by the term
21 . . . i .
E&? [(S;‘f'b — &) ] i.e., the variance of the S&” under the swap measure with annuity as the numeraire.

5.3.2. Discrete Replication by Swaptions

Another approach is to statically replicate the CMS payoff by a discrete portfolio of European
swaptions. The idea is to replicate the linear payoff of CMS caplets/floorlets with the concave/convex

payoff of European swaptions at different strike prices in such a way that the distance between both
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payoffs is minimized. Let us first write a CMS caplet payoff as a linear combination (with static weights)

of a series of payer swaption payoffs with strikes K = K, < K; < -+ < Ky

N-1
+ +
VERE = Prp(SfP —K) = E wpA7" (S — Kp) (127)
h=0

Then the CMS caplet value at t can be written as

N-1

VP = P, rET [PTJ, (seb — K)+] = P, E] [A%P Z wp (5P — Kh)+
h=0
(128)
N-1 N-1
= AFPEL [Z wy (SFP - Kh)+ = z wnVin
h=0 h=0

As long as we can calculate the static weights, the replication is trivial.

Again, we approximate the quantity g,, = B, ,/A%" by a function G(S$") of the swap rate S5°,

such that
N-1
G(SEP)(SEP = K)" = ) an(SE? —Ky)" (129)
h=0

To derive the weights wy,, we first let S?'b = K;, this gives

0

6K (K = Ko) = ) wn(Ky = Kn)* = w0o(Ky = Ko) = wo = G(Ky) (130
h=0

and then S#? = K,, such that

G(Ky) (K; — Kp) = Z wp(Ky — Kp) = wo (K, — Ko) + w1(K, — Kq)
h=0 (131)
_ G(Ky) (K3 — Ko) — wo(K, — Kop)

@1 K, — K,

when S?’b =Kj;1 V0 <j <N —1,we have w; to be defined recursively
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J j-1
6(K541) (Kjia = K0) = ) on(Kjr = Kn) = 0;(Kya = ) + ) won(Kjia = Ki)
h=0 h=0

(132)

_ o = G00) (K — Ko) = B on(Kjva — Ka)
f Kivi = K;

In the case of floorlet, we have the replication portfolio of N receiver swaptions at strikes K =

K0>K1>"'>KN

N-1 N-1
VERR = PyrEF [Pry (K — $§°)"| = PorEF 43" z wn (Kn — 57‘%"’)1 = 2 wpVES (133)
h=0 h=0
Writing the payoff
N-1
G(SEP)(K = 52)" = " ok - 577)" (134)
h=0

the weights can be derived in the same manner. Firstly let S;?'b = K;, this gives

0

6K (Ko = K) = ) won(Kn = K)' = wo(Ko = K2) = wo = G(Ky) (135)
h=0

and then let S#° = K, to yield

G(Ky) (Ko — K3) = Z wp (K — K3) = wo(Ko — Kp) + w1 (K; — K3)

h=0 (136)
0. = G(Kz) (Ko - Kz) - wo(Ko - Kz)
! K, — K,

when S?’b =Kj;; VO<j<N-—1,wehave

J Jj-1
6(K541) (Ko = Kj11) = D 0n(Kn = Kjua) = 0y(K; = Kjua) + ) 0on(Kn = Kji)
h=0 h=0 (137)

= G(Kj+1) (Ko = Kju1) = Thzo @n(Kn = Kji1)
f K~ Ko

In fact, the weights for floorlets retain the same form as for the caplets.
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In the following, we will introduce two definitions for the G (S&”) function on S&°.

5.3.2.1. Linear Swap Rate Model

In the linear swap rate model, we want to approximate the G(S?'b ) by a linear swap rate function

P
ﬁ =G(S7") = asp” + B (138)

T
We will know in next chapters that, in the context of Gaussian 1-factor model, the zero coupon bond, the

annuity and the swap rate are all functions of a common factor, the short rate r. For example, the zero

coupon bond admit an affine term structure, such that Pr, = exp(—Ar, — Br,r), where By, =

p u 1—e~*®-T) | ; .
fT exp(— fT sts) du or Br, = — if mean reversion rate x is a constant. Hence the slope

coefficient a can be calculated as

9G(S7")
_ 66(57‘}’17) _ —or _Prp Dot TiBriPr; — BrpPrp 139
a= ab T ab ~ ,ab cab b (139)
aST aS_T AT ST i=a+1TiBT.iPT,i + BT,bPT_b - BT,aPT,a
ar

where the derivatives are as follows

b b

0Pr 0A%"
Frae —BrpPry and 3 = Z T, Pr;=— z 7;BrPr;
i=a+1 i=a+1
b
0G(S7”) _ 9 Prp 1 9Prp  Pry 0A7 _ 5. P Prp Z Bp
or or A% A%P or Jab)? or TP gab " yaby? PETETL
T T ( t ) T ( T ) i=a+1
(140)
_ Prp (Z?=a+1TiBT,iPT,i B >
— 4ab b ~ PTp
A7 A7
b
aSg'b_aPT,a aPT,b_S?'bZTB P PT,aB +PT,bB
~ 5. .ab A, ab _ .ab iPTitTi — T apPTa ™ gpPtb
ar 67‘,4‘; arA;{ A‘;, ord A‘;, A‘;
Using the initial freeze approximation (e.g., P, = P, and A%” ~ A?"), we get
P Yo . T;BpiP,; — By P
t,p i=a+1 “iPT,itti Tpitp (141)

~ a,b ca,b b
At St i=a+1 Tl'BT,iPt,i + BT,th.b - BT,aPt,a
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Because Pr,, /A‘;'b is a martingale under the swap measure associated with A?'b , We derive B by

Py E%D lPT.p
ab — Tt a,b
At AT

P,
a"; — aSt? (142)
t

= aEP[SFP]+ B =aSP’ + B = B =

In (128) or (133), the CMS caplet or floorlet with strike K is replicated by a portfolio of vanilla
payer or receiver swaptions with strikes Kj, € [K, Kjax] O Ki, € [Kpmin, K]he lower or upper bound of

strikes, Kpind Kmaxan be set by

1 1
Kimin = S¢” exp (—nZ - EZZ), Kmax = S&P exp (n): — 522> (143)

where £ = ¢v/T — t is the ATM total Black volatility of swap rate ST‘f'b and n corresponds to number of
standard deviations (e.g., usually n = 5). For strikes K;,, the range (e.g., [K, Kmax] OF [Kmin, K]an be
spaced uniformly or log-uniformly. In fact, one may make it more flexible and use vega to determine the
bounds. For example, we may firstly calculate the vega of an ATM swaption on S*”, and then find the
strikes of the swaption having a vega 100 times smaller (by inverting the vega Black formula. Note that
there are two solutions corresponding to lower and upper bound respectively). The strikes found can be
used as the bounds.
5.3.2.2. Hagan Swap Rate Model

This model takes into account the initial yield curve shape and allows (only) parallel yield curve
shifts (see appendix A.3 in Hagan 2003 [7]). Again we assume the dynamics of yield curve follows

Gaussian 1-factor short rate model. By assuming constant mean reversion rate x, we have B, =

—e—K(T-1)
ﬁ. The shifted zero-coupon bond is then given by initial yield curve shape and a shift &

Py
P T,V(<>z )=P t, T,V exp(—BT,Vf ) and Piry = _Pt' (144)
t,T

Consequently, we have the annuity, the swap rate and the function G defined as

b

AP = wP©),  SPE) =

i=a+1

Pr.o (&) = Pr,(§)
AFP ()

PT,p (f)
AT (§)

(145)

, G =
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Since there is a 1-to-1 mapping from & to swap rate S}l'b, we may find the corresponding & for a given
swap rate S by inverting S = S?'b (&). The range of strike for K}, in (128) and (133) can then be remapped
in terms of the shift &, e.g., &, € [&k, Emax] TOr Ky, € [K, Kmax]. The replication is performed using a

series of uniformly spaced &, that is

N

) .-
VP =) @S and VRS = ARPESP|(SEP - SEPGED) | 6 € Gk bl
h=0 ) .
(146)
N - -
VER =D oV and VS = afE (5200 - S)'], 6 € [Eim 6]
t,K h'Vth t,h t t |\~T h T 1K h min’ SK
h=0
5.3.2.3. Treatment in Multi-Curve Framework

As discussed in chapter 3, in the context of multi-curve framework, the swap rate is determined
jointly by the projection curve and discounting curve. Namely, we must calculate the swap rate by the

formula

_ 1 ﬁT,fi_s (f) - ﬁT,fi_e (f)
) S S G aPry, @ Z corPrr, @)

Ci,aPrp; () (147)

where we can estimate the projection curve Pr,(§) = P,y exp(—BT,VE) and the discounting curve

Pry(&) =Py exp(—BT,Vf) under the assumption of constant multiplicative spread (see section 8.5.2).
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6. FINITE DIFFERENCE METHODS

For a comprehensive discussion of this topic in the context of derivative pricing, please refer to
[9] [10] and [11].
6.1.  Partial Differential Equations

Suppose a multi-factor stochastic process is governed by the following SDE

dx = pudt+ o dW,, dW.dW/! = p dt (148)

nx1l  nx1 nxn nxn

where we use prime symbol (e.g., W') to denote transpose operation. The vectors are defined as follows

, o = Diag
nxn

Ui;t,x] ) W, = [Wi;t] (149)

nx1i

X = |:xi;t‘; n = [:ui;t,x
nx1 . nx1 .

The o = 0, is an n x n diagonal matrix and W = W, is an n x 1 correlated Brownian motion (with

correlation matrix p) under a measure associate with a numeraire N. In the context of derivative pricing,
we likely encounter two types of PDEs associated with this stochastic process. The first one is called
Kolmogorov forward equation (i.e., Fokker-Planck equation), which governs the evolution of the
transition probability density function p(t, B|s, @) of the stochastic process x;, €.g., the transition density
having x, = f attime t given x; = « at start time s. The second is the backward PDE given by Feynman-
Kac Theorem, which governs the evolution of derivative value under an equivalent martingale measure.

6.1.1. Kolmogorov Forward Equation

Numerical solution of transition probability density function is often sought for the purpose of

model calibration. Its evolution is characterized by Kolmogorov forward equation below

n n
o Z Oup) 1N 9*(Zyp) _
at axi 2 4 axian

i=1 i,j=1

0, ltl_I)I; Ptxisa = Ox-a 2ij = 0p;0; (150)

with 6(+) the Dirac delta function as its initial condition. It basically tells that if we solve the equation
with initial condition at x; = a € 2 = R" at time s, then we would be able to find x;, = f € R attime t

with a probability density p(t, B|s, a).
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6.1.2. Evolution of Derivative Price

Suppose asset U(t, x;) and numeraire N (t, x;) both are driven by the same stochastic process x;,

the dynamics of U can be expressed as

oU 1 oU dW'cHyodW
dU = Z2dt + Jydx + = dx'Hdx = —dt + Jyudt + JyodW + —2077
Jt 2 Jt 2
(151)
ou 1'a(Hy - p)ol

where the 1 denotes an n x 1 all-ones vector used to aggregate vector/matrix elements. The Jacobian J
and the Hessian Hy; are defined as

au ou 02U 02U

=, =— d  Hy=—, [Hyl
1])([:1 ax []U]l axl an nxl‘r]l axz [ U]l,j

(152)

and the Hy - p denotes element-wise multiplication. Assume the numeraire N is lognormal and its

dynamics can be described by

LN =6dt+ eaw,  dt= 1dN+12deN—1(’ 0)dt Loaw @53
N T §raw, N~ T NZ 2 N3 =y &ee NS

where 8 = 0(t,x,) is a scalar drift and & = &(t, x;) is an n x 1 volatility of N. The N-denominated

derivative price U/N = U(t, x;)/N(t, x;) driven by x, possesses dynamics as follows
NdU—N(ldU+Ud1 +dUd1)
N T \N N N

B (E)U 1o(Hy - p)aﬂ)
= —

o5¢ Tk dt + JyodW + U((§'pE — 0)dt — §'dW) — Jyopédt (154)

_(9U N 1'o(Hy - p)ol
~\ot 2

+Jy(u—ap) + (§'p§ — 9)U> dt + JyodW — U§'dw

Since the U/N is a martingale under the measure associated with N, the drift term must vanish, which
gives the PDE that governs the price process as follows

oU  T'o(Hy - p)ol

Fri > + Ju(opE —u) + (0 —&'p&HU  or (155)
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n

n
au
oip; + O—ipi'f'_.ui + 0 — Elplf U
at zzl“aax,zz i) Z i)

i,j=1 i=1 \j=1 i,j=1
The price U evolves backwards in time with a terminal condition known at time T > t.

6.1.3. Boundary Conditions

Note that in order to find meaningful solutions to the PDE’s, initial or terminal conditions must be
specified. In addition, proper boundary conditions must also be provided. Defining I'(t) to be the
boundary of the spatial domain, we present below a few types of boundary conditions that are used
frequently in practice.

Table 6.1 PDE boundary conditions

Type Definition
Dirichlet U(t,x) = fp(t,x) Vx€eTr(t)
ou
Neumann a(t, x) =fy(t,x) Vxer(t)
: 02U
Convexity a2z &0 = fe(t,x) Vx€eTl(t)
Exponential 0*U (t,x) = ou (t,x) Vxer(t)
axz X T g \* *

In the table, the fp, fiy and f. are some deterministic functions. There is nothing special for the top three
boundary conditions. The last one, exponential boundary condition, comes from the fact that most of the
time, the diffused variable is the log spot, i.e., x = logS. Since majority of derivative contracts has a
payoff (e.g., (S — K)* for a call) that is ultimately exponential in x (or linear in the underlying spot S),
we have 02U/dS? = 0 at boundary. Namely, the gamma sensitivity is zero. This translates into
02U /0x? = dU /0x with respect to the variable x for x € I'(t). As such, the exponential boundary
condition is also often known as zero gamma boundary condition.

6.2.  Finite Difference Solver in One-Dimension

Writing the forward equation (150) in 1D, we get

op _10%(c%p) (up)
%2 B ! - 156
ot 2 axz Ox ) ltflir;pt'x|51a (Sx_a ( )
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Note that the partial derivatives are taken on o2p and up rather than just on p, as both u and o are
dependent on x. This is simpler for the backward equation (155), which in 1D has the form as

au  ¢20%U au
_— __ = — ) _ 2 157
o 5oz T O -5+ (0 - (157)

In the backward equation, we may assume money market account as the numeraire, which gives 8 = 1, ,
and ¢ = 0, the (157) further reduces to

U 620U U
ou _ o%0°U _ 9U 158
at 2 oxz HagxTTY (158)

with a terminal condition U given by payoff function upon trade maturity. To solve these PDE’s, we need
first to introduce discretization methods for the spatial and temporal domains.

6.2.1. Non-Uniform Spatial Discretization

We discretize the spatial domain of x to form a computational grid. For a typical lognormal
process, the spatial domain is usually defined in log space. In a simple application, a uniform grid with
equal spacing is sufficient. However, a non-uniform grid is often in favor in practice with denser
distribution of grid points around some critical values, such as spot, strike and barriers. Without loss of
generality, we will derive the finite difference approximation of partial derivatives based on a non-uniform
grid. The conclusion can be easily extended to the case of a uniform grid. Firstly, we must specify the
lower bound L and upper bound H of the domain. These can be estimated, for example, as a few standard
deviations away from the spot (or log spot). The bounds can be overridden if a product to be priced has a
natural boundary. For instance, the upper barrier level of an up-and-out call option can be used as the
upper bound if the barrier is lower than the aforesaid H.

Given boundaries of the domain, there are many ways to generate non-uniform grids. In the
following, we will discuss one of the methods. At first, let us define a variable ¢ suchthat0 < ¢ < 1. In
discrete case, we can choose & = i/m fori = 0,---, m where m is the size of the grid (i.e., there are n =

m + 1 grid points including the two end points). Based on the uniform grid of &, we would like to
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construct a non-uniform gird x (&), which is transformed from & with two boundaries defined as x(0) =
Land x(1) = H.
6.2.1.1. Grid Generation: Single Critical Value

Introducing a critical value C such that L < C < H, we want to have denser grid point distribution

around the value C. This can be achieved by using a Jacobian function defined as

dx(§) _

= Ve @O -0 (159)

J(§) =

where a is a prescribed constant controls the grid uniformity. The ordinary differential equation (159) can

be solved analytically and considering the boundary values we get the solution [12]

+ (1 — &) arcsinh

H-C L_C), a=pB(H-L) (160)

x(¢§) = C + asinh (5 arcsinh .

where £ is a constant (e.g., 0.1, the larger the £, the more uniform the grid spacing) and the hyperbolic
sine function and its inverse are defined as

eX — =%
sinhx = — arcsinh x = log (x +/x2 + 1) (161)

6.2.1.2. Grid Generation: Multiple Critical Values
The transformation (160) can be further generalized to construct grid that takes care of multiple

critical values, e.g., L < C; < H fori = 1, -+, k. In this method, a global Jacobian is defined as

1

dx(§)

k -2
J(§) = d_«f = A(Z}i(f)—2> and J;(§) = \/al? + (x(§) = C)? (162)

where the local Jacobian functions J; (&) are in the same form of (159) and A is a parameter to be
determined by boundary values [13] [14] [15]. It is evident that near the critical values the global Jacobian
is dominated by the behavior of the local Jacobian, but the influence of nearby critical points ensures that
the transitions between them are smooth. In general, the global Jacobian must be integrated numerically

(e.g., using Runge-Kutta method) to yield the x(&). The numerical integration starts from lower boundary
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value x(0) = L and adjust the parameter A such that the upper boundary value x(1) = H is satisfied.
Since x(1) is monotonically increasing with A, the numerical iterations are guaranteed to converge.

Lastly, we usually want to fine tune the non-uniform grid for the sake of numerical accuracy. For
example, we usually want the spot fall right onto a node of the grid. We also want to place certain
quantities, such as barrier levels and strikes, in the middle of two adjacent grid nodes.

6.2.2. Approximation of Partial Derivatives

Suppose we have the following non-uniform grid for spatial variable x with spacing h

u. A_  u Ay Uy
L @ L
x_ h_ x h, X4
where the simplified notations are defined below
U_ =ujq, u=u, Uy = Uiy
Xo=Xj—1, X=X, Xy = Xigq (163)
ho=x;—xi—1,  hy =Xxp41— X

We may also define a time t state price U, on the grid x, which is an x 1 vector (for n = m + 1) with

entries u; = U(t, x;)

Uy Xo
U = Ui |, x =X (164)
nx1 : nx1i :

um xm

As U, is a function of time t and spatial variable x. Taylor expansion of U around x = x; gives

U h29%U h3a3U

= N —_ _ 4

u+—u+h+ax+ > ax2+ 6 ax3+0(h+)
(165)

_ ou , h292U h§63U_F0(h4)

u-=u “o0x 2 0x? 6 0x3 -

After simple algebraic deduction, we have
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oU  h_. u,-u hy u-—u_ hyh_03U

i 0(h3
ax hi+h. h, T h+h K 6 axz 100
(166)
02U 2 u,—u u-—u_\ h,—h_0%U
= ( - )— : +0(h3)
oxZ h,+h.\ h, I 3 ox°

Often the non-uniform grid will occur as a transformation of a uniform grid z;, such that the spacing h =
Z;41 — z; remains constant and x; = g(z;). As such, the term h, — h_ in the above equation admits a

quadratic convergence, which can be shown as below

d%g
hy —h_ = g(z;41) + 9(zi-1) — 29(z;) = h? 172 + 0(h?) (167)

Truncating the higher order terms in (166), the partial derivatives can be approximated by the following
finite difference schemes, both are second order accurate

a U h+ h+ - h_ h_

~

T R T A S S U A VR

=AU

(168)
92U 2 2 2

P (N A e S A TR A

=AU

where 4, and 4., are the first order and second order finite difference operators, respectively. They can
be constructed as tridiagonal matrices, with entries as follows

Table 6.2 Formulas for first order and second order differential operators

sub-diagonal (j =i — 1) | diagonal (j = i) | super-diagonal (j =i + 1)
y B h, hy —h_ h_
o (hy + h))h_ hy h_ (hy + h_))h,
2 2 2
A (hy + h_)h_  hh_ (hy + h)h,

Letting v = 02 /2 and applying the differencing schemes to the backward PDE (158), we get its (spatial)
finite difference approximation, written in matrix-vector form, as follows

ou 0?0 U +7rU ou MU M=rl-D,A D, A (169)
_— —— e = — = = — —
ot 2 ox2 HFox T ot ’ T Pofax = Pulx

where the D, is an n X n diagonal matrix converted from the n x 1 vector v and I denotes an identity

matrix. It shows that we can construct a tridiagonal matrix M, which may be a function of t and x, to
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perform the spatial finite difference approximation for the PDE. It should be emphasized that (169) is only
valid for interior grid points. For those grid points at boundaries, further treatment must be taken into
account for boundary conditions. For now, let us assume that this approximation is applicable for all the

grid points. In a similar manner, we can write the finite difference approximation for the forward PDE

(156) as
dp 10%*(e%p) d(up) Ip
ot 2 ox? ox oc p F=daDy = 4D, (170)

where F is again a tridiagonal matrix that can be dependent on t and x. Since the partial derivatives are
taken on products of two functions, both of which can be function of x, the operators (e.g., 4,, and D,,)
do not commute. Unlike what we see in (169), we must flip the matrix multiplication in (170), e.g., from
D,A,, to 4,,.D,, to reflect the relation.

6.2.3. Temporal Discretization

For the temporal discretization, let us use the backward equation as an example. As mentioned,
the 1D PDE in (169) evolves backwards in time. The discretization in time defines the following temporal

finite difference approximation

U, — U,_
tT” = OM,_sU,_5+ (1 —OMU, = (I + 05M,_s)U,_s = (I — (1 — O)SM)U,  (171)

At time t, the U, is known, we evolve it backwards to U;_s for one time step from t to t — . The scheme
becomes explicit when 6 = 0, implicit when 8 = 1 and Crank-Nicolson when 6 = 0.5. In practice,
Crank-Nicolson scheme is often in favor due to its second order accuracy in time. However, it is also well
known that the Crank-Nicolson scheme may exhibit localized oscillations for discontinuous terminal
conditions if the time step is too coarse relative to the spatial step. A remedy proposed by Rannacher is to
take two fully implicit time steps (6 = 1) before switching to Crank-Nicolson (6 = 0.5) time-stepping.
This solution is also known as Rannacher time-stepping [16].

6.2.4. Boundary Conditions
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As presented in Table 6.1, the PDE boundary conditions must be specified. In order to handle the
boundary condition properly, we consider a vector U extended (fictitiously) from the vector U with two

more ghost points added, g_ and g, , shown as below

— g_ -
Uy
Uy

_ : 172)

U =
(n+2)x1

~

where the g_ and g, are devised for a specific boundary condition. With the help of the ghost points, all
the grid points of U can now be treated as interior points. We can then rewrite the difference equation
(171) into

ZUt—8 = ﬁUt, Z = i+ HSMt_é‘, ﬁ = i_ (1 - 0)6Mt (173)

nx(n+2) nx(n+2)

Both L and R are n X (n + 2) matrices with 3 diagonal entries

lo Lo I o To To
[l P b oo

j(174)

nx(n+2) - _ + ! nx(n+2) - _ +
lm—l lm—l lm—l ‘ Tm-1 "Tm-1 Tm-1
- + - +
lm lm lm Tm T™m Tm

and the extended identity matrix defined as

010

010

nx(n+2) - . 0 0 (175)
1

1
010

The lumped matrix M is an n x (n + 2) matrix, similar to the M in (169), with the extra leading and
tailing column added to take advantage of the ghost points for boundary conditions. With the help of the

ghost points, the first and the last row of M can be constructed in the same manner as for the interior grid

points. Further notice that, because for every time step we know U, and want to solve for U;_g, the (173)
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can be split into two steps with an intermediate n x 1 vector V, i.e., an explicit step V = RU, followed by
an implicit step LU,_s = V.

For the explicit step, it is merely a matrix-vector multiplication to form V. However, in each time
step, we generally have U, which has no explicit ghost points. We must transform the multiplication
equivalently to

V=RU =RU,+S (176)
with an n X n square matrix R and an auxiliary vector S. The matrix R is basically the same as the matrix
R with the first and the last column of R removed, and then replacing the first and the last row of the
resulted matrix with 4 new parameters: qq, qg ., ¢m and g,,. The n x 1 vector S has zeros everywhere

except for its first and last entry s, and s,,, (i.e., honzero entries for the boundary nodes). This is shown

below
Vo [% 0 ] U So
[ S ] N r [ ] 0}
V; | = . | Uu; | 4+
l J l m-1 m-1 m—1Jl J l J
Ymy m  qm dUm7 SmJ
nZl ngn nL>I<t1 n§1
By (176), we must have the following equations
Vo = Qolio + qo Uy +So = Ty g— + Tollg + 15 Uy
(178)

VUm = QmUm—1 + GmUm + Sm = TmUm-1 + TnlUm + T 9+
Providing a boundary condition, we are able to find g_ and g,, then determine R and S by (178), and
finally derive V from existing U, by (176).

For the implicit step, we need to inverse a matrix for the solution U;_s. Instead of working with

LU,_s = V directly, we again transform the equation to an equivalent form

LUy s+Z=1LU,_s=V (179)
with an n X n square matrix L and an auxiliary vector Z. The matrix L is constructed similarly as what we
have done for matrix R. It is basically the same as the matrix L by removing the first and the last column
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of L, and then replacing the first and the last row of the resulted square matrix with 4 parameters: p,
Ps . Pm and p,,. The n x 1 vector Z, which is also similar to the S, has zeros everywhere except for its

first and last entry z, and z,,. This is shown as follows

Po Do Uo Zg Vo
L L : 0
. . . U; + =|V;
- l I+ : 0 : (180)
m—1 m:l m—ll J l J
P P I ¥mles md Umo
nkn l7]1t><_1‘S na ks

By (179), we can derive the following equations
PoUo + Pous + 2o = lg g + loug + lguy
(181)
Plm—1 + Pmm + Zm = Lp—1 + Ly, + g
Providing a boundary condition, we are able to find g_ and g, then determine L and Z by (181), and
finally solve for U;_s from the known V by (179) .

Notice that there is a perfect symmetry in (178) and (181), and hence we will only derive the
expressions for parameters in L and Z. The conclusions can be easily adapted for the R and S by the
symmetry. In the following sub-sections, we will discuss how these parameters can be determined under
different boundary conditions.
6.2.4.1. Neumann Boundary Condition

Neumann boundary condition assumes the first order derivative is known at the boundary, that is
dU/ox = f at end points. With the ghost points, we can approximate the first derivative at end points, x,

and x,,,, using (166)

U (xy) h_  uy —ug hy uy—g-

ax  h,+h_ h, +h++h_ o
(182)
aU(xm) - ho g, —upm + hy  Up—Up _
dx  h.+h_ h, h, +h_  h_ = fm

Further assuming equal spacing around the end points, e.g., h, = h_ = hy = x; — x, for the boundary at
xoand h, = h_ = h,, = x,,, — x,,,—, for boundary at x,,,, we can derive
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g- =uy — 2hofo, g+ = Um—1 + 2hipfm (183)
From (181), we have

Po = Lo, po =1l +15, 2o = —2lghofo
(184)
Pm=ln+tln  Pm=ln  Zm=2l5hnfn
6.2.4.2. Convexity Boundary Condition
Convexity boundary condition assumes the second order derivative is known at the boundary, that

is 32U /0x? = f at end points. With the ghost points, we can approximate the second derivative at end

points, x, and x,,, using (166)

aZU(XO) . 2 (ul_uo_uO_g_>=f
dx2 h, +h_\ h, h_ 0
(185)

azu(xm) " 2 (g+ —Un _ Um — um—l) — f
dx2 h, +h_\ h, h_ m

Further assuming equal spacing around the end points, e.g., h, = h_ = hy = x; — x, for the boundary at
Xxo and hy = h_ = h,, = x,, — x,,,—, for boundary at x,,,, we can derive

g- = 2uq —uy + h§fo

(186)
gy = —Up_q1 + 2Upy + hfnfm
From (181), we have
po = lo + 215, po =lg — Iy, zo = lyhifo
(187)
Pm = lm — l;-n' Pm = lm + ertu Zm = lrtthanm
6.2.4.3. Zero Gamma Boundary Condition

Zero gamma boundary condition assumes the second order derivative equals the first order
derivative at the boundary, that is 92U /0x? = dU/dx at end points. With the ghost points, we can

approximate the relationship at x, and x,,, using (166)

0%U(xo) _ 0U(xo) :>h_—2 hy+2

— — = 188
0x? dx h, (g —uo) + h_ (up—9-)=0 (188)
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azU(xm)_aU(xm):)h_—Z( )+h++2
axz  ox h, g+ = Um h_

(um - um—l) =0

Further assuming equal spacing around the end points, e.g., h, = h_ = hy = x; — x, for the boundary at

Xo and h, = h_ = h,, = x,,, — x,,,— for the boundary at x,,,, we can derive

I T h 2 T hp 2™
(189)
_hp+2 4
g+ hm_zum—l hm_zum
From (181), we have
_ ho—2 _
Pozlo'*‘mlo' po+=lé+mlo, zo =0
(190)
hpy +2 4
pT;lle_n_i_h:_zl‘;l;’U pmzlm_hm_zl:—nr Zm =0
6.2.4.4. Dirichlet Boundary Condition

Dirichlet boundary condition assumes the function value is known at the boundaries, that is u, =
fo and u,, = f,,. Since this boundary condition has nothing to do with the ghost points, the treatment is
different from the other boundary conditions. Let us first consider the implicit step (179) where we solve
for U,_s from existing V. Since the u, and u,,, are always known from Dirichlet boundary conditions, we

may construct the linear system as

1 0 Ug Zo Vo

P 5 0 '

. . . Uu; + =|7V;
m-1 lmo1 Lnoaf] 0 : (191)

0 1 Jupmld,_s \irfr_ld 3@1

n£<'n Ut—s n§1 nZ1

which gives the parameters

(192)
Pm =0, Pm =1, Zm = Um — fm
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This shows that regardless of the values of v, and v,,, and we always have f, = vy — z, and f,,, = v,, —

Z, in the right hand side vector V — Z to ensure u, = f, and u,, = f,,. It is only the interior entries of V

that matter. This is equivalent to first knowing u, = f, and u,, = f;,, and then solving for interior entries

u; for 0 < i < m based on these values.

For the explicit step (176) where we find vector VV from existing U,, the parameters can be derived

in the same manner

nxn

which gives the parameters

dm = 0,

q5 =0,

dm =1,

So = fo — U

Sm = fm — Unm

+

o 9 Uo So
[d0 @0 =1
rn o nnon || | | V|

. . Uu; +1 :

Tm-1 Tm-1 r;z—1“ : J 0
Gm  Gm 1HUmde  Smo

S

(193)

(194)

This is equivalent to first calculating V = RU, for interior entries (0 < i < m) and then setting v, = f,

and v,,, = f;,. The interior entries v; for 0 < i < m have no direct dependency on the v, and v,,.

The Table 6.3 (and Table 6.4) below summarizes the changes to the first and last row of matrix R

and vector S in explicit step (and matrix L and vector Z in implicit step) for the associated boundary

conditions. Note that the treatment is essentially the same in the two steps due to symmetry, except for the

vector S and Z in Dirichlet boundary condition.

Table 6.3: Matrix R and vector S by boundary conditions for explicitstep V = RU + S

Type RO,O = (o R0,1 = q(-; So Rm,m—l =qm Rm,m =qm Sm
Dirichlet 1 0 fo—uo 0 1 fm — Um
Neumann To o+ Ty =215 hofo|  Tm + 1, Tm 217 o fom
Convexity To + 215 o — 1o 75 h2fo Ty — Tt T + 2737 T hZ, fn

4 hy — 2 ) 4
ZeroGamma |1y + o o + N 0 - i — T 0
0 g +20 o TR T L L

73



Table 6.4 Matrix L and vector Z by boundary conditions for implicit step U = L™1(V — 2)

Type Loo = po L0,1 = p(-)l- Zy Lm,m—l = Pm Lm,m = DPm Zm
Dirichlet 1 0 vo — fo 0 1 Um — fm
Neumann ly T4+ =2l5hofo| Iy + 1 L 205 hon fom
Convexity lo + 215 IF -1y Iy h3fo Ly — I L + 20 LY h2, fm

— i1+ - - + _ +
ZeroGamma l°+h0+zl° l°+h0+zl° 0 lm+hm_zlm I hm—zl’" 0

The boundary conditions for forward equation can be treated in a similar manner. However, as one
can see from (170), the coefficient functions u and v (for v = ¢2/2) are involved within the partial
derivatives. We need to impose some boundary conditions for these functions in order to derive their
corresponding ghost point values, which are required to form extended diagonal matrices, e.g., D, and D,,.

These matrices will be subsequently used to assemble the matrix 4,,D, and 4, D, and eventually the

matrix F for numerical solution of the PDE. An intuitive boundary condition can be used for this purpose,
such as zero convexity boundary condition, i.e., we assume linear extrapolation at boundaries for these
functions.
6.3.  Finite Difference Solver in Multi-Dimension
Suppose we have an m-dimensional initial value equation with proper initial and boundary

conditions of the form

U~

ot Zala +Z ”a a (195)

i,j=1

where coefficients a;, b;; and ¢ can be functions of ¢ and x;’s. Such PDE’s are commonly classified as
convection-diffusion equations. In the context of derivative pricing, they are usually parabolic (as the
partial derivative with respect to t is only up to the first order). As the dimensionality of the space
increases, the complexity of finite difference schemes and the difficulty to implement such algorithms

increase remarkably. The system that combines the operators from all dimensions is no longer tridiagonal
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and may possesses a large bandwidth. Though still very sparse, it may demand a suitable sparse matrix
technique and can be computationally intensive.

To resolve this “curse of dimensionality”, researchers developed alternating direction implicit
(ADI) methods and locally one dimensional (LOD) methods to solve multi-dimensional parabolic
equations on a square domain using finite differences. The main idea of the two types of methods is to
split the simultaneous application of operators from all spatial dimensions into sequential operator
applications, one for each dimension, so that the 2D or 3D problem can be solved as two or three
consecutive 1D problems, where tridiagonal matrices can still apply. A brief introduction to these methods
can be found in [17] [18] [19] [20]. The intuition behind this is straightforward. When a PDE contains
different terms expressing different physics, it is natural to use different numerical methods for different
physical processes. This can optimize and simplify the overall solution process.

To sketch out these methods, we may write an m-dimensional initial value equation as

o

ST =AU, L=Lit Lyt Ly (196)

. d a2 . . .
where £ is some operator (for example, £; = a5 —+ b4 Pyt and so on). While £ is not necessarily
1 1

linear, suppose that it can be at least written as a linear sum of m pieces, one for each dimension, which
act additively on U. Assume that for each of the pieces, we already know a differencing scheme for
updating U from timestep n to timestep n + 1 with § = t,,,; — t,,, valid if that piece of the operator were
the only one on the right-hand side. The ADI methods evolve the state variable U in each timestep in
multiple stages, treating only one dimension implicitly (and the other dimensions explicitly) at each stage.
The following updating steps show a typical ADI scheme

Uns1m — U

5/m - =L1U7’L+1/m+L2Un+'"+LmUn
(197)

Un+2/m - Un+1/m

6/m

= LlUn+1/m + LZUn+2/m + -t LmUn+1/m
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Un+1 - Un+(m—1)/m
5/m = LlUn+(m—1)/m + LZUn+(m—1)/m + -+ L Upyq

The LOD methods, on the other hand, divide each timestep into fractional timesteps with simpler
operators, such that each fractional step contains only the derivatives of the variable of interest

U +1/m Uy
% = £1Un+1/m

U +2/m Un+1/m
- = 5 = LZUn+2/m

(198)

Un+1 - Un+(m—1)/m

6

= Lm Un+1

Itis worth noting that in ADI schemes like (197), the intermediate quantities Uy, fori =1,---,m —1

are approximation of U,,,, numerical boundary conditions can be directly derived from those of the
original problem. However, in LOD schemes, like (198), the intermediate steps are non-physical and are
purely mathematical construct. The accuracy of LOD schemes depends on the approximation of boundary
conditions at the fractional timesteps, which in many cases is not trivial to implement. The simplest
approximation method is to use the exact boundary conditions given by the full PDE. This is not an issue
for scheme like (198), which is just first order accurate in time. However, other higher order LOD schemes
using this approximation may suffer from accuracy order reduction [21] [22] [23].

In our applications, we use scheme (198), which is also known as Marchuk-Yanenko operator
splitting [24] [25] [26], to solve multi-dimensional parabolic PDE. Unfortunately, the mixed derivative
prevents this from occurring. So, it is handled explicitly. We are in favor of this method because

e It is a fully implicit scheme (except for the cross term) that ensures unconditional stability. In
contrast, in the ADI scheme (197), each stage we solve for one dimension implicitly, relying on
explicit derivatives of the other dimensions. If there were abrupt changes due to, say, non-smooth
payoffs, the explicit derivative might lead to difficulty in solving the problem.
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e |t is computationally efficient, easy to implement. Although it is just first order accurate in time,
it suffices for our applications. Schemes with higher order accuracy generally require
implementation of complex approximation of boundary conditions for intermediate steps and
special treatment of mixed derivatives to avoid accuracy order reduction.

In the following, we discuss in details about implementation of this method in solving backward and
forward PDEs arising from derivative pricing applications. The example is in 2D.

6.3.1. Backward PDE

Suppose we have a 2D backward PDE in a general form with proper initial and boundary
conditions

ou ou ou 0%U 0%U 0%U
=a—+ta——+b

ot ox dy = 0x? +h dy? T dxdy +1U (199)

where coefficients a, b, ¢, f, a, § can be functions of t, x, y. To solve the equation, we split the full PDE
(195) into two 1D PDE’s, each containing only one of the spatial variables, while the mixed derivative is
handled explicitly in x PDE

ou_ U 9 9 . 0U_ U 9% 200
ot Yo T Pae Ty TV 5T 9%, TR

For each time step, from t to t — 1, we take the result of the previous time step and use it as the start point
for the x step. We take the result of the x step and use it as the starting point for the y step as we evolve
again over the same time interval. After both steps, we have evolved all two variables for the time step t
tot— 1.

Numerically, we represent coefficients a, b, c, f, a, f and function U as n X m matrices, with n
rows representing x direction and m columns representing y direction. Suppose we want to evolve the
PDE backwards for a time step from t to t — 1 with a time interval &. We first prepare the cross term and
zero order term using the known U,. This is equivalent to compute

¢ (4,U0.4)) + f - U, (201)

77



where the dot operator denotes element-wise multiplication of matrices and prime symbol stands for
matrix transpose operation. Both differential operators 4, and 4,, are constructed according to Table 6.2.
Once the term (201) is obtained, we move to the x step where we solve for U;_s,, column by column
using fully implicit scheme. This is equivalent to writing

U, —U,_
O (Dol + Dyl )Usssp + - AU LY + f - Uy =

0 (202)
(1 + 5Dan + 6Dbex)Ut_5/2 = Ut - 6C ' AxUtASI - 6f ) Ut

where the diagonal matrices D, and D, are constructed from corresponding columns of a and b
respectively. Note that a and b can be functions of both x and y, the D, and D, may vary when we iterate
through columns. Once the U;_gs, is computed, we carry on with the y step where we solve for every row
of U,_, in the same manner, such that

Utl—a/z - Ut,—l

s = (Dady + Dpdyy )Ui_y = (I + 6DgAy + 5Dg Ay )U[_y = U{_s, (203)

where the D, and Dy are derived from corresponding rows of a and g respectively. It is worth mentioning
that in the steps (201), (202) and (203), the matrices and vectors must be adjusted consistently to the
boundary conditions, as shown in Table 6.4. This has been discussed in details in Section 6.2.4. As an
approximation, exact boundary conditions given by the full PDE are used for the intermediate steps.

6.3.2. Forward PDE

In the case of a forward PDE, it often admits the following general form

dp d(ap) d(ap) 0%(bp) 03*(Bp) 0*(cp)
9 _ 204
ot ax oy TToxx T Tayz T oxay TP (204)

where p can be the transition probability density. The treatment is nothing special. We still break the full

PDE down into the following two PDE’s

dp _d(ap) 9*(bp)  9*(cp) ap _ 9(ap)  9°(Bp)

_ - 205
ot ox T oxz Taxay VP T oy Yoy (205)
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and then solve implicitly for the x step followed by the y step. The only difference from the backward
PDE is that the partial derivatives are now taken on the products of two functions instead of function p
alone. To take care of this, we will follow the same strategy as stated in Section 6.2.4, which assumes zero
convexity boundary condition for these coefficient functions and then finds their corresponding ghost
point values to form the extended diagonal matrices for matrix assembling. To illustrate the steps, let us
define coefficients a, b, ¢, f, a, B and function p as n X m matrices, with n rows representing x direction
and m columns representing y direction. For the cross term, we estimate it explicitly as

Ay (c p)dy + f - pe (206)

And for the x step, we implicitly solve for every column of p., s/, by

Pt+s/2 — Pt '
R = (UeDa + A DyIPersya + Ax(c POMY +f P =
(207)
(I —84,Dg — 6AxxDb)pt+8/2 =p; +64,(c- pt)AS/ +6f - pe
Once the p;4s/, is ready, we then solve the y step implicitly for every row of p,,, by
Pi+1 ~ Pres/z : P (208)
- < - (AyDa + Anyﬁ)pt+1 = (I - SAyDa - 6Any,8)pt+1 - pt+6/2

é

Note that different from backward equation, we have switched the sequence of matrix multiplication, e.g.,
A, D, in forward equation versus D 4, in backward equation, to account for the differences in partial
derivatives. Again, the matrices and vectors must also be adjusted to take boundary conditions into

account. The exact boundary conditions are again used as an approximation for the intermediate steps.
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7. THE HEATH-JARROW-MORTON FRAMEWORK

In this chapter we will discuss Heath-Jarrow-Morton (HIJM) Framework, a general no-arbitrage
framework for interest rate models. Since the description of the single-factor HIM model is readily
available [27], without loss of generality, our focus will be on the multi-factor version of the HIM model,
which can be easily reduced to single-factor model.
7.1.  Forward Rate

The HIM Framework assumes, for a fixed maturity T, the instantaneous forward rate f; » evolves,
under a certain probability measure (e.g., physical measure IP), as a diffusion process defined by

dftr = agrdt + 1B rdW; (209)

where we use a prime symbol (e.g., 1') to denote a matrix transpose operation and define the n x 1 vector-

valued and n X n matrix-valued functions as

nxn nx1 nxn

21 = [1], Ber = Diag ﬁi;t,T]; aw, = [dWi;t] ) dWdW; = p dt (210)
n . . .

The 1 denotes an all-ones vector used to aggregate vector/matrix elements. The g, r is a diagonal matrix
denotes an adapted volatility process. The dW, € R™*! denotes a column vector of Brownian motions
under physical measure I, whose correlation matrix p is given by dW,dW, = pdt. The advantage of
modeling forward rate is that the current term structure of the forward rate is, by construction, an input of
the model.

The derivation starts with a zero-coupon bond, a market tradable asset, whose value is given by

the instantaneous forward rates through (40)

P.r = exp (— j ft,udu) (211)

The bond price dynamics is a total differential with respect to ¢, which can be calculated via Ito’s lemma
dPy T 1 r r

—=d| - j frudu | +=d | — f fudu ) d —J feudu and (212)
Pt,T t 2 t t
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T T T T
d(— f ft,udu> = f;.dt — f df;du = r.dt — f (ar,dt)du —1' f (BendW:)du
t t t t

Since integrals can be regarded as a limit of Riemann sums, we can reverse the order of the integration in

(212) such that

f T(at,udt)du = ( f Tat,udu) dt and f T(ﬁdet)du = ( f T,Bt,udu> aw, (213)

If we define
T T
arr = J. g, du and ber = f S udu (214)
t nxn t
we shall have
T
d <_ f ft'udu> = Ttdt - at,Tdt - ﬂ,bt,Tth (215)
t

and hence the dynamics of bond price reads

APy
Pt,T

1
(T‘t - at'T + Eﬂ,bt,prt,Tﬂ) dt - ﬂ,bt,Tth (216)

The negative sign in front of the diffusion term indicates the movement of bond price is negatively
correlated with the forward rates. If we define a market price of risk vector A,, such that it satisfies the

following equation
! 1 !
Vbyrdr = arr — E]l b rpberl (217)

there will be infinite equations, one for each bond with a different maturity T. However, the A, must be
unique (i.e., independent of T), otherwise arbitrage opportunity arises. Since the bond is a tradable asset,
its price must admit a drift at risk-free rate r, under risk neutral measure Q, that is

dP,r

t,T

= T'tdt - ﬂ’bt,T(th + /1tdt) == T'tdt - ﬂ’bt,Tth (218)

where dW, = dW, + A.dt is an n-dimensional Brownian motion under Q.
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The forward rate dynamics under Q can be derived in a similar manner. We first apply aa—T to (217),
which gives
VBirAr = arr — 1B rpbe 7l (219)
and hence from (209)
dfer = aprdt + 1B (AW, — ,dt) = 1By rpbyrldt + 1B rdW, (220)
As one can see, under risk neutral measure Q, the drift term of the forward rate dynamics is fully
determined by the volatility term. This is known as the HIM no-arbitrage condition.
We know from (41) that f - is a martingale under the T-forward measure Q”, where the associated
numeraire P,  has a volatility term —b, ;. According to (23), we have
dW{ = dW, + pb, r1dt (221)
as a Brownian motion under Q. The dynamics of f, » becomes driftless after change of measure from Q
to Q7, such that
dfer = 1'Ber(dW, + pberldt) = 1' B rd Wy (222)
In short, the following two equations summarize the above discussion

dPt,T

= Ttdt - ﬂlbt’Tth = (Tt + ﬂlbt’prt’T]l)dt - ﬂlbt’TthT
t,T (223)

dfyr =1 Berpberldt +1' B rdW, = 1' By rd W
Given the forward rate dynamics in (223), the instantaneous correlation between two forward rates,

fer and f; ,, can be calculated as

VBerpPeyl
\/ﬂ'ﬁt,TP.Bt,Tﬂ\/ﬂ',Bt,VP,Bt,Vﬂ

Correl( fer fty) = (224)

If the p were an identity matrix (i.e., independent Brownian motions), the instantaneous correlation would
be no more than a cosine similarity between the two volatility vectors, B, r1 and S, /1. In single-factor

models (i.e., dimension = 1), the (224) ends up with a perfect positive correlation for the whole term

82



structure of forward rates regardless of the volatility function chosen. The imposed perfect correlation is
obviously unrealistic. The rate term structure dynamics observed in the markets show not only the parallel
moves, but also steepening and butterflies. This constraint, however, can be relaxed when the
dimensionality of the models is increased. By specifying a proper volatility function, it allows the vectors
of the forward rate volatilities to be non-parallel and therefore allows the forward rate correlation to vary
overT.

7.2.  Short Rate

Integrating df,, r in (223) over u from start time s to present time t gives the forward rate

t t t
for = For + 0 [ Burpburdut 41 [ Burdy = fog +0 [ puramf (225)
N N N
When T = t, we have the short rate (i.e., instantaneous spot rate) under risk neutral measure

t t
Ty = for + Il’f Bu:pby dul +f 1B, +dW, and its dynamics
S

N

) t 9 t
dr, = I f 1 (ﬂpbut + By, tp,[i'ut) 1du + f 1
oc ), \ar 7w PP, S

(226)

0B,
0

- dl/T/u) dt + 1'B, . dW,

where in the first equation the f; . reflects the initial forward rate term structure, and the covariance

fst B ¢pby cdu is the convexity adjustment comes merely from a measure change from t-forward measure
(under which r; is a martingale) to the risk neutral measure in a continuous manner starting from initial
time s. The diffusion term in rate dynamics shows that the instantaneous volatility of the short rate is S ;.
The first term in drift shows the drift comes partially from the slope of the initial forward rate curve. The
second term in drift depends on the history of § as it involves g, for u < t. The third term in drift
depends on the history of both 8 and dW. The second term (if S is stochastic) and the third term are liable
to cause the process of r to be non-Markovian, i.e., the drift of  between time t and ¢t + At may depend
not only on the value of r at t, but also on the history of r prior to t [28].

In further analysis, we may reformulate the short rate (226) into an affine function of x;
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e =fse+ 1'% (227)
where we define the n X 1 vector-valued stochastic variable x; along with its variance y, (which is an

n X n symmetric-matrix-valued auxiliary variable)

t t
X = f ,Bu,tpbu,tdu]l+f Bu,tqu and its dynamics
S S

dxt=<f (Pt gfpbuﬁﬁutpﬁut)ﬂdmf il W)dt+ﬁttdwt

(228)

Ve = Qseer = J. ButpPudu  and its dynamics
S

ap ap
dyt=< utpﬁutdu+f BucP utdu+,3ttpﬁtt dt
N

To further ease the notation, we define another three n x n matrix-valued auxiliary variance functions,

which will be used repeatedly in the context

t t
PseTv = f ﬁu,Tpﬁu,Vdur [(ps,t,T,V]i’j = ] ﬁi;u,Tpiij;u,Vdu
S S

t
AstTv = j Burpbyydu, [XstTV jﬁlqul] bj.uydu
s
(229)

t t
Ysiry = j by rpbyydu, [ll’s,t,T,V]i i = J bi;u,Tpijbj;u,Vdu
s ’ s

t
fsz,t,T,V = j (bu,V - bu,T)p(bu,V - bu,T)du =Ysivy —Yserv — Wsevr + Yserr
S

In general, the volatility process S, . can be stochastic, hence the distribution of x, and y, are not well
known. However, under the assumption of deterministic 5, ., the y, becomes deterministic and the
variable x, follows a normal distribution characterized by mean fst Puepby cdul and variance y,.

The non-Markovianess of the short rate r; can also be identified from the expression of x; in (228),
where the stochastic driver x; has time t in the stochastic integral not only as the upper bound of

integration, but also inside the integrand function. However, if we assume a separable form for g, r, e.g.
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Ber = OtAr (230)

The x; and y, become a joint Markovian process, as shown below

(8 log A,
Xt =

o et yﬂl) dt + Ao, dW,

(231)

dlog A, dlog A,
)’t=< 3t Vet Ve——F— 3t +/1t0t,00tl)dt

and so is the short rate ;. To further extend the model to cover the skew/smile features in rate dynamics,
one may assume the S, r to be a stochastic volatility or a local volatility (or both). A summary of such

extensions can be found in [29].

7.3.  Zero Coupon Bond

The bond price can be expressed as P, r = exp (— ) tT ft,vdv) with the forward rate (225)

T P 1
P.r = exp (—f ftlvdv> = P—exp< f f 1By vpbyyldu dv—f f ]l,Bu,,dW dv)
t

P ¢ byrpbyr — bypb t _
=L exp (— f g 2l Pout — PutBut g gy, f ]l’(bu,T—bu,t)qu>
Ps,t s 2 N

(232)

Alternatively, the bond price can also be derived from P, ; = E, [exp (— ftT rvdv)] with the short rate

(226). The same result as in (232) should be reached. We firstly derive the integral of the short rate

t t v v
]rvdv =] <f5,,, +j ﬂ’ﬁu_,,pbu_,,]ldu+j ﬂ’ﬁu,vdVTfu> dv
s s S s

t ot t rt
= —logP, + ] j 1 By ppby p1dv du + J j 1By, dv dWW, (233)
S u S u

t ﬂlbu,tpbu,tﬂ

= —log P ; +] >

S

t
du + J 1'by, (AW,
S

As expected, the bond price admits the same expression as in (232)

T
P.r=E, lexp (— f rvdv)l (234)
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Py by, .phy,1 t (T ppbyd r _
_ ST [exp ( f ~PutPutZ gy, f 1'by AW, — f —2uTPPuT gy f n'bu,Tqu>l
Ps,t S 2 S S 2 S

b by 7—by tpb _ 1'b by 7l _
_ Psr e—fstn’ WTOOUT UL Gy (£ (bay Do) AW E, e—ff%du—ffﬂ’b”,mwu
P

st

=1

P, © byrpbyr — by pb t ~
_ 5T exp (_ J. ]1, u,Tp u,T 2 u,tp u,t 1du — f ]l’(bu,T _ bu,t)qu>
s N

where we can show that the expectation highlighted above is always equal to 1 even with a stochastic b, r
(with assumption that b, r is stochastic only in t). The proof is sketched below with an infinitesimal time

. . T-t
interval defined as § = — forn » o

n
11" by Tpby 71 T _ 1'beyisTPPreisT]
E, [e- PR | _ | i [ o s

n—oo

=0

n—oo 2

n
_ Vbyyi5 7Pbrris 7l
= lim [Et[l |(1+<— CHOTPDr+isT 6—ﬂ'bt+i5,Tzi\/§>
i=0

1( 1Ubryisrpbeyisrl ’
+§<_ t+uS,T2P t+i8,T 6_]1’bt+i6,TZi\/§> _|_>

n
- 1b,,; beris 1 Vb, i57Z:Zibpyisr1
— lim E, 1_[(1 _ t+16,T2p t+i8,T 6_]1,bt+ié‘,TZi\/§+ t+i8,T é iDe+isT s
" i=0 (235)
3
ro(#)
n
- 1'b,.; berisrl Vb, is57Z:iZibyyisr1
— lim E, 1+Z<_ t+l6,T2p t+i8,T 6_ﬂ’bt+i6,TZi\/§+ t+i8,T ; iOt+is,T 6)
" i=0
n n 3
4 Z Z Vb5 ZiZ]bes 516 + 0 (55)]
i=0 j>i
=1
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where Z; ~ NV (0,p) is a series of independent and identically distributed standard normal random
variables possessing the properties

I ifi = ~ £0 ifi>]
Et[zizj]={g ifl.ij. and Et[bt+mzj]{:0 ifisj' (236)

A look-alike proof can be found in [30]. However, it is practically distinct from the one shown above, as
the T variable appears in both the integrand and the upper bound of the integral. Nevertheless, the idea
still applies.

The bond price dynamics, presented in (223), can also be obtained from the bond price. First taking

logarithm on both sides gives

P, Y byrpbyr — by pb
log Pt,T = log sT _ f 1 uw,TPOur u,t POyt
N

t
1du — f 1 (byr — by )dW, (237)
P, 2 s
We then differentiate both sides with respect to t using Ito’s lemma and substitute with r; in (226)

dP,r 1dP.rdP.r
Por 2 Pyr P

1 t . t .
= foxdt =5 1'berpberldt + 1 f ButPby cduldt —1'byrdW, + 1/ f Bo,c AW, (238)
S N

1 ~
= T'tdt - Eﬂ’bt,prt,Tﬂdt - ﬂ,bt,Tth

The respective drift and diffusion terms are matched to obtain the bond price dynamics

dP, r

t,T

= T'tdt - ﬂ’bt,Tth (239)

This is identical to (223), as expected.
Price of a forward bond, defined as P,z = El[Pry| = P.y/Pur for s <t <T <V, can be

computed from (232), and then subsequently expressed under Q7 via (221)
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Pery ( f L byypbyy — byrpbyr
pl—1] 1
S

t
= 5 1du — f ﬂ,(bu,V - bu,T)qu>
s

P, sT,V

t _ _ t
= exp (— f 1 (Duy bu'T)g(bu'V bur) 1du — f 1 (byy — bu,T)quT> (240)
S S

dP, %
LIV _ —ﬂ'(bt,v _ bt,T)Pbt,Tﬂdt _ ﬂ'(bt,v — bt'T)th = —ﬂ/(bty - bt,T)thT

Pt,T,V
Following the proof (235), it can be shown that the forward bond is a QT martingale. In fact, this can be
directly inferred from (22) using bond volatilities —b, r and —b, . In a more specific case, if b,z is
deterministic, the forward bond becomes a lognormal martingale expressed in a Q7 joint normal Z7 with

a total variance &2, 1., given in (229)

1'&2 1 , t
Piry = Psry €xp (— % -1 ZT) ) AR j (bu.v - bu,T)quT ~ N(O: fsz,t,T,V) (241)
S

7.4.  Caplet and Floorlet

Let us assume the Libor rate Ly is fixed at T such that T @ Ay = U, we may write the caplet

value at start time s from (78) as

+
+ Pry —Pry
Vs(,:'ll"),%J,V = S,VIE:sV [T(LU,V - K) ] = PS,V]EZ I‘L’ <T - K) l

. (242)
(Pry— (1 +Ko)Pry)
PT,V

= Py rE} [(PT,U -1+ KT)PT,V)+]

= PS,VIE:SV [

where T = V — U. If we further ignore the spot lag and assume U = T, the caplet/floorlet can be treated

as a put/call option on a spot zero-coupon bond Py, (equivalent to Py 1), that is

+ 1 ¥
ViRl = Pl |(1— (L + KDPry)'| = (1+ KD)PoyE [(m ~Pry) ] (243)

In general, the distribution of P, 1, is unknown. However, if b, 1 is deterministic, the P, ., becomes a Q”
lognormal martingale, the caplet price can then be calculated by Black formula (81) using total variance

&7y defined in (241)
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1
VERky = (14 K0Py (o P S —1) (244)

7.5.  Swaption
From (88) we see that payer swaption entered at s and matured at T for T @ A; = T, can be
valued (after change of measure from Q to Q) by

b + ) +
VES 0 = PsrEl (Z Pr,iri(LT,i—K)> = Py (PT,a—PT,b—K > PT,l-ri>

i=a+1 i=a+1

(245)

b + e
1 if i=a

= s,TEZ <Z CiPT,i> ) Ci ={ —7;K ifa+1<i<b-1
i=a -1-7K if i=b

The exact distribution of the summation is not well defined. Nevertheless, in certain models, the swaption

price can still be tractable with special treatments. This will be discussed in Section 8.4.2.
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8. SHORT RATE MODELS

In this section, we will firstly provide an overview of affine term structure models, a broad class
that many short rate models belong to. Then we will focus on the derivation, calibration and application
of the Hull White model, a Gaussian affine term structure model widely used in industry.
8.1.  Arbitrage-free Bond Pricing

Suppose there is a short rate r; following a stochastic process in a general form

dr; = udt + 1o, dW, (246)

where dW; is an n X 1 Brownian motion under physical measure, scalar u, and diagonal-matrix-valued
o, are instantaneous drift and volatility process for r, respectively. Assuming the price of a bond P; r
depends only on the spot rate r;, current time t and bond maturity 7', then Ito’s lemma gives the bond
dynamics as

aP dP 1. ,9%P
“Ldt +—"Ldr + = dr' ——2

P = —
dPer ot or 2 or2

dr

oP, P,. 0P,
_9ter gy, Ofer | O
o Mt~

0P, 1 0P, 1o,po102P, 0P, ¢
‘(T”t or T2 o JUt G,

102P,;
2 0r?

1o, dW; + dW/ o 11 o, dW; (247)

1o, dW,

We assume the bond price follows a geometric Brownian motion with drift 6,  and volatility w7

dP; ¢
— = 0y pdt + 1'w,7dW; where
tT
(248)
5 _ 1 aPt’T aPt'T ]1'O'tp0't]1 azpt’T _ 1 aPt'T
or =P \ac  Hor 2 orz )0 “TT B, or ¢

Since the short rate is not a tradable asset, it cannot be used to hedge with the bond, instead we try to
hedge bonds of different maturities by constructing a portfolio with a long position of dollar value v, of

P, and a short position of a set of dollar value [Vs]; = vs, V 1 < i < n of P, . The portfolio value I, is

given by IT = vy — V41 and the instantaneous change in portfolio value is
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dH = UT(5t,Tdt + ﬂ’wt,Tth) - VS{(At,Sdt + Qt,Sth)
(249)

where [At,S]i = G5, [Qt'S]i,j = [wt,si]j’j

The A s is an n X 1 vector and the Q; s is an n X n matrix whose i-th row is 1'w,,. If we choose the
dollar values such that

vilwer = Vs = Vs = vpl'wrQps (250)
Then the stochastic term in (249) vanishes and the equation becomes

il vrSer — Vsl s
H B vT - VS{H

dt = r,dt (251)

The last equality comes from the fact that the portfolio is instantaneously riskless and thus it must earn
the risk-free short rate to avoid arbitrage. This gives

UT(5t,T - Tt) = Vs’(At,s - rt) = vrl'werQrs (At,S - rt) (252)
Hence for an arbitrary bond maturity T, there must exist a unique (vector) quantity A, = Q;§ (At,s - rt),
which is independent of T, such that

Vwyrds = 67— 1t (253)
The A, same as in (217), is called market price of interest rate risk, as it gives the extra increase in
expected instantaneous rate of return on a bond per an additional unit of risk. Using the expressions in

(248), we arrive at the governing partial differential equation for the bond price

) ’ ) _ —_ ’ ]1/ A
Py < ot M T o t TP or O
(254)
aPt’T , aPt'T ]l'O'tpO't]l azpt’T
T + (ue — Vo dy) a7 + > 972 — 1P r =0
The solution of the bond price is
T 1 T T
P,y =E, lexp (—f r,du — Ef Ap~ A, du — f A;p‘lqu>l (255)
t t t

To show the claim, we define an auxiliary function for t > s
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t 1 t t

Vsr = exp (—f r,du — E_f A,p A, du —f /Iilp‘lqu> (256)
N S N

Applying Ito differential rule to V. with respect to ¢, we have

av, Lpia Lp~ia
5t = —pdt — =Lt ge — arp~taw, + 2t
V., 2

dt = —r,dt — A,p~tdW, (257)

and then to Vs P, 7, we get

d(Vo;Per) _ dVse | dPyr  dVsdPor
Vs,tPt,T Vs,t Pt,T Vs,tPt,T

= —Tt—dt - l’tp_lth + 6t'Tdt + ﬂlwt’Tth - ﬂ,wt'TAtdt (258)
= (61:'7‘ - Tt - Il'a)m%t)d‘[ + (ﬂ'thT - /1'tp_1)th
- (]l’(l)t,'r - A;:p_l)th

The (258) shows that the V, P, process is a martingale under physical measure, and since V,, = 1 and

Prr = 1, we must have

T 1 T T
P,r = Ei[Vir] = E, lexp <—j 1, du — Ef A,p A, du —j A;p‘lqu>l (259)
t t t
If we let 4, = pB; then according to (13) we have
1t t ~
Z; = exp <—§] Ap 1A, du — j %p"lqu> and  dW, =dW; + A.dt (260)
S S

and the change of measure shows

P.r = E[V,r] = E, [exp <— fTru du) é—j =E, [exp <— fTru du>l (261)
t t

This is the bond price under risk neutral measure. It follows exactly the arbitrage free pricing theory. Since
the change from physical measure to risk neutral measure (or vice versa) can be easily achieved by
including a vector of market price of risk A; such that

dW, = dW, + A.dt (262)

we put our focus on the rate dynamics under risk neutral measure for its simplicity.
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8.2.  Affine Term Structure
By (227), the short rate can be expressed as an affine function of state vector x,, i.e., r, = f;; +

1'x,. Suppose under risk neutral measure, the state vector x; follows a diffusion process governed by a

general SDE

dxt = atdt + O-tth (263)
with

a, = [ai;t], o, = Diag [ai;t], aw, = [dWi;t], AW, dW; = p dt (264)

nx1i : nxn : nx1i : nxn
the short rate must admit dynamics like

d ~
dry = ( gi't + Il’at) dt + 1'o,dW, (265)

If the model can produce zero coupon bond prices in an exponential-affine form

Pt,T = eXp <_At,T - ﬂ,Bt,Txt> v 0 S t S T (266)

1x1 nxn
with scalar A, r and diagonal matrix B, being deterministic functions of the time t and the maturity T,
we then say it is an affine term structure model (this definition is different from what you typically see in
textbooks where the exponent is usually an affine function of the short rate r; rather than the latent variable
X¢, it’s easy to show that the two definitions are algebraically equivalent). The tractability in bond price is
the main advantage of affine models. In fact, by design, many short rate models admit an affine term

structure. To observe this, we first differentiate the bond price via Ito’s lemma

OP; 1 0P 1 1, aZPt‘T
dP.r = TR dt + O dx, + 5 dx; 92 dx;
APy A 9B, , 1 , _
2 = — at dt -1 at xtdt -1 Bt,det + Eth O-tBt,T]l]l Bt,TO-tth (267)
t,T

dP;r (ﬂlBt,TUt.DUtBt,T]1 0A¢r , 0B r
= = — -1

P -, > 9t ot X¢ — ﬂ,Bt'Tat> dt - ﬂ,Bt,TO-tth
t,
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Since the bond is a market tradable asset, in order to avoid arbitrage, the drift term in the above equation

must equal to r; under risk neutral measure @, that is

1'B;r0:p0¢ By 11 _ 0A¢ 7 1 0By r
2 Jt at

X —1VBiray—for —1'x, =0 (268)
If one can solve for the A, and B, (which are independent of x,), the model admits an affine term
structure. A sufficient condition [31] [32] for this would be that both the drift o, and the sum of covariance
matrix columns B, ro.po.B, r1 are affine functions of x, (i.e., a, = a; + byx; and B ro,p0 By 71 =

p: + q.x; for vector-valued functions a,, p, and diagonal-matrix-valued functions b;, q;). This

assumption transforms (268) into

0A¢cr 1'p, , , 0B r q:
- at +T_fs,t—ﬂBt’Tat_]1 (T"‘Bt"rbt_?‘l'l)xt:o (269)

with I denoting an identity matrix. Because (269) must hold for all x, its coefficient must vanish, we can

derive the following two ODE’s

0B dt
ot + Bt,Tbt - ? + 1= 0, BT,T =0
(270)
0A;r  1'p;

at - T + ﬂ’Bt'Tat + fS‘,t = O, AT,T == 0

The terminal conditions Ay = 0 and By = 0 are implied by the fact that the bond value upon maturity
at T is always at 1 regardless of the value of x;. The equation for B, r does not involve A, -, which can
be solved first, then using the solution of B, to solve for A, by integration. Both A, and B, ;- are
known and are independent of x;. In a single factor model (i.e., x; is scalar-valued), the covariance matrix
B.ro.po.B.r degenerates into a scalar. The sufficient condition [33] simplifies to: both drift term «, and
variance term o2 of x, are affine functions of x, such that @, = a, + b;x, and 6 = p; + q.x,. Under

this condition, the (268) reduces to

0A;r 1 0B r 1
ot + EB?,Tpt - fs,t — Byray — (T + Bt,Tbt - EBI:Z,TQL“ + 1) x =0 (271)

and therefore gives the following two ODE’s that can be solved in the same manner
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1
— + Bt,Tbt - EBtz,th + 1 = O, BT,T = 0

(272)

Ay 1
FT EBt,Tpt + Byray + f5: = 0, Arr =0

Every term structure model, including affine models, driven by Brownian motion is an HIM
model. This is because, in any of such models, there are forward rates, the drift and diffusion of the forward
rates must satisfy the condition in (220) for a risk neutral measure to exist, which rules out arbitrage. To

see this, we first drive the forward rate using definition (40) and bond price (266)

dlogP 0A 0B
gryr _ t,T e tT

oT oT oT (273)

fer =—
The forward rate dynamics is then derived

Bt,T

aoT

924 9?B )
dfpr = ok dt 4+ 1 —— xdt + 1

aTot aT ot dx;

azAtT athT 0BtT 0Bt7~ ~
— )y 1A ’ I ’ I » 274
(aTat +1 TTac xt+ﬂ—aT a; |dt +1 T o, dW; (274)

,0Br ,
= Il a—To-tpo-tBt,Tﬂdt + Il

0B r

7 o.dW,
where the last equality is obtained by applying partial derivative d/9T to (268). With bond volatility
b.r = By ro., we can see that the forward rate dynamics conforms to the HIM no-arbitrage condition
(223) as expected. In fact, this equivalency is assured because no-arbitrage condition is unique.
8.3.  Quasi-Gaussian Model
8.3.1. General Form
8.3.1.1. Stochastic Process

Quasi-Gaussian model, also known as Cheyette model [34] [35], was named by Jamshidian [36]
for a class of Markovian HIM models with a separable volatility structure. It is a special case of the HIM

framework. In Quasi-Gaussian model, the forward rate volatility function g, r, as in (209), is assumed to

be in a separable form, i.e., a product of a maturity dependent function and a time dependent function

95



%, (275)

where both ag; and A; are n X n diagonal-matrix-valued functions. Given such volatility specification, the

bond volatility (214) transforms into

T T
Ot
b= [ Beadu=TBer,  Aop= [ Ao (279)
t t t

Meanwhile, the stochastic processes x; and y; in (228) become

Uu

Apl

dlog A;
ot

bou —
xt = A‘t A'Ll. tdu]l + A‘t f A_qu ) dxt = (yt]l + xt) dt + O-tth
S u
277)
dlog A, dlog A,
At.f /,1 du At' dyt = ( at yt + yt at + O'tpO't) dt

The joint process of x; and y, are now Markovian, and hence can be expressed in a recursive form for

s<v<t
_ A Ay R
Xt = Xt|s = l Xy|s + Yols 5 1 1)+ Xtlvs Ve = Yes = /1 yvlsll + Vil (278)
(4
8.3.1.2. Forward Rate and Short Rate

The forward rate (225) and its dynamics (220) can be expressed in terms of the joint Markovian

process x; and y; (277)

t t _ A A
fer =fsr + 1 ] Burpbyrdul +1' j PurdW, = for +1' — . (3’ /1 — 1+ xt)
S S

At
(279)
dftT —_— I]. BtprtTﬂdt + ﬂ ﬁtTth —_— ﬂ ATA pA AtTﬂdt + ﬂ /’{,TA_dWL—
Similarly, we have the short rate and its dynamics (226) expressed as
0 dlogAl ~
T't = fS,t + ﬂ,xt, dT‘t = ( af:::,t + ﬂ’ af : xt + ﬂ,yt]l) dt + ﬂ'O‘tth (280)

Note that in (275), the A, is usually taken as a simple time-dependent deterministic function. The o; can
be stochastic. For example, it can be a local volatility o, = o(t, x4, y;:), or a stochastic volatility o, =

o(t, z;) driven by a separate stochastic factor z;, or a stochastic local volatility o, = o (t, x;, y:, z;). Since
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the o; is stochastic, the x; and consequentially the short rate r; are unlikely normally distributed (hence
the model is called Quasi-Gaussian model). In contrast, if g; is deterministic, the short rate r; follows a
normal distribution, and the model degenerates into a Gaussian model.
8.3.1.3. Zero Coupon Bond

The zero-coupon bond (232) can be expressed as an exponential-affine function of the Markovian

state variables x; and y; in (277)

Aer
—_ T'td _]l,

—1-1—=
Pir /1t

_ Py 1 At,T At At ) dPyr
( 2V Ve 7 7 atth (281)

It should not be confused with the sufficient condition stated in section 8.2. Here the affine function is on
the joint state variables x; and y,, whereas the aforesaid sufficient condition is imposed on the process x;
only in order to admit an affine term structure.

The forward bond and its dynamics (240) transform into

Pery ~ ex (_ 1]1' (At,v Ay B Aer At,T) ST 4 Ary )
Pory P2\ 20 TR A PR
1 Ary Ary to, oy oy -~
=eXp —E]l Ttyt /1t 1— ﬂAij A ’DA uT]ldu HATVL Zqu
(282)
1 Ary Ag Loy
= —-1'—= “1-1A —dw,]
eXp ( 2 At yt /1t T,V L Au u
Porv _ _gip Appldt — 1V Apy =2dW, = =1'Apyy == dW/]
Priry TV/—ltP)lt tT TV)L t = TV/lt t
where we have applied the change of measure (221)
T A7 Ou
dw,, = dw, + pA_Au,Tﬂdu (283)
u
8.3.2. Mean Reversion
It is often convenient to assume A; to be a simple function of time, for example
dlog A, t
FrEL = A = exp —J Kydu|=E, Vs<t (284)
N
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where k;, called mean reversion rate, is an n X n diagonal-matrix-valued function of time. Given this

assumption, the forward rate volatility (275) becomes

T
, Ei.r = exp (—f Ki;udu>
t

With such volatility specification, the bond volatility (276) transforms into

—Ar = E¢roy, E,r = Diag

A, Ei,‘t,T
t nxn :

T

T T
bt,T = f ﬁt,udu = f Et,uatdu = Biroy, B.r = J Et,udu
t t

t

and the following identities are often used

At,T AT,V

T T
Aer = f Es,dv, /1_ = f Ein,dv = B;r, T = Bty — Bty = BryEer
t t t t

Based on the last equality in (288), we can also derive using definitions in (229) that
Ysevy — Yserr = Bry QserrBry + 2BryXserr

Xst,T Vv — Xst,T,T — BT,V(pS,t,T,T
8.3.2.1. Stochastic Process

With A, = E, the joint Markovian process x, and y, in (277) reduce into

t t
X = ] Eu,tO'upO'uBu’tdu 1+ J Eu_tO'uqu ) dxt = (Yt]l - Ktxt)dt + O-tth
S N

¢
Yt = Qs = j Eyt0upoy By cdu, dy: = (=KeYt — Yeke + oppop)dt
S

(285)

(286)

(287)

(288)

(289)

Note that since k; is a diagonal matrix and y, is a (symmetric) variance matrix, the product .y, is

different from y,k,. It can be seen that the x; exhibits a mean reversion property, and so does the short

rate r;. The recursive definition (278) for s < v < t becomes

Xt = Xt|s = v,t(xvls + YUlst,tﬂ) + Xt|v Ve = Ve|s = v,tyvlsEv,t + Velw
8.3.2.2. Forward Rate and Short Rate

The forward rate (279) and the short rate (280) thus follow
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fer = for Y VEeryeBerl + 1'Erxy, dfir = VErorpoe By rldt + ]l’Et,TJtth

s

(291)
T't = fS,t + ﬂ,xt, drt = ( at

+ ﬂ’ytﬂ - ﬂ,Ktxt) dt + ﬂ,thWt

8.3.2.3. Zero Coupon Bond

Lastly, the zero-coupon bond and its dynamics (281) read

PS;T 1 ’ ’
Pir = _P €xp (‘ Eﬂ BiryeBerl—1 Bt,Txt)
St
t
P 7 1, , , —
= p eExXp| — Eﬂ Bir@sitttBerl —1UBerXs el —1 Bt,TJ Eu,tUuqu (292)
s,t S
dPt T , ~
— = Ttdt - ]l Bt,TO-tth
T

given x, and y, in (289) and definitions in (229). The forward bond and its dynamics (282) hence are

P B B,y — B B
LTV _ exp (—ﬂ’ tvYtbey tTYeDe 1— 1By, Et,Txt)
Psry 2
BryE E,+B
= €xp (‘ﬂ' 4 t'T};t LS P ]1’BT,VEt,Ttht,T]1 - ﬂ,BT,VEt,Txt>

1 t t _
= exp (‘ EHIBT,VEt,T YeEerBryl — ﬂ,BT,VJ EyroupoyByrldu — HIBT,VJ Eu,TUuqu> (293)
N N

1 t
= €xp (‘ _HIBT,VEt,T YeEerBryl — ﬂ,BT,VJ Eu,TUuquT>
S

N

dP, 7
YV — —1'BpyE, 10,00, B rldt — 1'ByyEy 70, dW, = —1'By v E, o, dW]

Pt,T,V
where we have used the change of measure (283)
dW,I = dW, + po, B, r1du (294)
8.4.  Linear Gaussian Model
Linear Gaussian model is a special case of Quasi-Gaussian model assuming a deterministic

volatility process o;. The rates and bond dynamics derived in Section 8.3 for Quasi-Gaussian model hence
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retain the same algebraic forms. For easy reference, the state variables x; and y; (289) and the short rate

1; (291) are repeated below

t t
Xy = f E,¢oupoyBy dul +f E,.0,dW,, dx, = (vl — kex)dt + o, dW,
S N

¢
Ve = .f EytoupoyEydu, dy: = (—KtYe — Yk + opo)dt (295)
S

0fs.t
at

1 = fsr +1'xy, dr, = ( +1'y,1 — Il’ictxt> dt + 1o, dW,

Since g, is deterministic, the short rate must be normally distributed, and thus it receives the name of
Linear Gaussian model. In the following, we summarize a few pricing methods of vanilla interest rate
derivatives in the model. Existence of closed-form or semi-closed-form of such pricing formulas is crucial
for efficient model calibration. Again, we assume a mean reversion parameter k; in the model, the same
as in (284) in section 8.3.2.

8.4.1. Caplet and Floorlet

Since Linear Gaussian model conforms to HIM framework and o, is deterministic, we can use
formula (244) to calculate the price of a caplet on a Libor rate Ly;, whose total variance is é37.1, as
defined in (229). Its expression in the context of Linear Gaussian Model becomes

t
fsz,t,T,V = ] ﬂI(Bu,V - Bu,T)UuPUu (Bu,V - Bu,T)]ldu =1Bry@serrBryl
S
(296)

t
with PstTVv = j Eu,TGquuEu,Vdu
s

8.4.2. Swaption

The valuation of swaptions is more sophisticated than that of cap/floors due to the fact that the
summation on cashflows appears within the (convex) payoff function. Knowing from (293) that the bond
Pry = Prry in Linear Gaussian model (where o, is deterministic) is a lognormal martingale under Q”

measure
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Bry®srrrBry
2

P TV

T
— exp (—n' 1— ﬂ’BT,VzT), Zy = f Eyr0udW ~ N (0,5 r7) (297)
S

PS,T,V
where Z; is n-dimensional normal random variable. Based on (245), the payer swaption price formula

(the formula for a receiver swaption can be derived in a similar manner) can be expressed as follows

b +

: : Br; Br;
VSI,D’I§,a,b = f ( CLPS,l eXp (_ﬂl T,l(ps;;;T,T T, ﬂ _ ]1,BT’I_Z>> f(Z)dZ
R™ \ 4

1=a

(298)

+

b
Br; B
:f (Z ; exp(—ﬂ’BT,iZ)> f(2)dz, 8; = c;Py; exp (_ﬂ, T,L<Ps,£,T,T T, ]1>
R i=a

where the function f(z): R" +— R, is the joint density of n-dimensional normal with mean zero and

covariance @grrr

_n -1 1,
f(z) = 2n) 2|<Ps,T,T,T| 2 exp (—Ez gps_%_T_Tz) (299)

In general, the multi-dimensional integral must be calculated numerically, however under certain
circumstances, analytical or semi-analytical solutions/approximations can be sought. In the following, we
will introduce a few methods that are frequently used in practice.
8.4.2.1. One-Factor Model: Jamshidian's Decomposition

When the model has only one stochastic factor, all the matrices degenerate into scalars. Assuming

that swaption expiry T = T, and the swap strike rate K is positive, the payer swaption price in (245)

simplifies to
b +
VSF,"IS,a,b = Ps,T[EZ <1 - Z |Ci|PT,L'> (300)
i=a+1
with the forward bond price
1
Pr; = Ps;exp (—Efiz - EiZ) ) fiz = ESZ,T,T,i = BTZ",i(ps,T,T,T (301)

where Z is a standard normal random variable. Since the bond price Pr; admits an affine term structure,

we can find a solution z* such that the fixed leg is valued at par
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b
1
D lalPr=1 with Phy=Popiexp(-58 - 6i") (302)

i=a+1
Hence the (300) can be rewritten into

+

b b + b
Virap = PsrET <Z lci| Pr; — Z |Ci|PT,i> = PsrEL (Z Icil(P;,i_PT,i)> (303)

i=a+1 i=a+1 i=a+1
Since volatility &; is non-negative, the Pr; is a monotonically decreasing function of z (i.e., Pr; — Pr; >
0V Z > z*). Hence the call option on a portfolio in (303) can be decomposed into a portfolio of call
options with strikes Pr; [37], that is

b
1z > z*} 2 |Ci|(P;,i - PT,i)]

i=a+1

b
% +
Vstan = S,TIEZ[ > leil(Pri = Pry) ]= Ps;rES

i=a+1

(304)
b b
* * % +
= Py [ > leil(Pri = Uz > 23| = Por D 1l BE [(Pri = Pr) ]
i=a+1 i=a+1
Since Pr; under Q7 is a lognormal martingale, the swaption value becomes
b
Vsl?7§,a,b = PS,T Z Ci%(P;,i' Ps,T,i: 512' 1) (305)

i=a+1
where B(-) is the Black formula in (81). Note that the formula (305) is developed under the assumption
that the swap rate strike K is positive. This assumption however will not hold for certain sovereign interest
rates after 2008 financial crisis, which renders the formula invalid. This issue can be addressed by another
method, which will be discussed next.
8.4.2.2. One-Factor Model: Henrard’s Method

There is another method proposed by Henrard [38] in 2003 for swaption valuation. It is basically
a variant of the Jamshidian’s decomposition. Let us start from the payer swaption price in (298), in one-

factor model it reduces to
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b
1 1
vsm—fw(Z&iexp(—az)) bz, P == (—57) (306)

where &; = & r; for brevity. Let h(z) be the payer swap payoff function in (306), that is
° 1
h(z) = Z S exp(—&z) with & = Py, exp (— 553) (307)
i=a
The h(z) can be regarded as a sum of exponentially decayed §; with non-negative decaying factor ¢&;.
Since §; has the same sign of c;, we can imagine that the §;’s are all positive up to a certain i = k (e.g.,
i = a forapositive K ori = b — 1 for a negative K (given that the K is not too negative such that the last

cp, can still be negative)), then all negative. Let us define another axillary function

b
9(2) = h@) exp(Er) = ) 8;exp((Ee — £07) (308)

Because ¢; is monotonically increasing as bond maturity grows (i.e., §; < &4 for T;,4 > T;), the §; and
the (&, — &;) now have the same sign. Therefore g(z) is strictly increasing. Since g(z) is negative when
z — —oo and positive when z — 400, the monotonicity in g(z) ensures that there is one and only one
solution z* such that g(z*) = 0, and so is it for h(z). In other words, given the unique z*, the h(z) < 0

if z < z* and h(z) = 0 otherwise. Hence the payer swaption price in (306) can be transformed into

VsTab—f 28 exp(— flz)gb(z)dZ—z f \/_exp<——2 &z >dz

= zb: 5; exp Ggf) (1-@ +¢&)) = zb: ¢iPs; ®(=z" = §;)

(309)

using the identity

fbexp(—%xz—ﬁx)dx=@exp<ﬁz)< (b\/_+\/—_)—d>(a\/5+\/%>> V a>0 (310)
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where ®(+) is the standard normal cumulative density function. In the case of a receiver swaption, the
signs of ¢;’s (and thus the signs of §;’s) are flipped. The same argument still applies, which gives the

receiver swaption price as

b * b
VEap == 6 f Z %ﬂexp (—ZZ—Z - fiz> dz == ) cPoy®( + ) (311)
i=a 7% i—a
This is consistent with the put-call parity in swaptions, that is, the underlying swap value should be the
payer swaption premium minus the receiver swaption premium.

Note that the formulas (309) and (311) are applicable only if the solution z* is unique. The
argument that §;’s are all positive (negative) up to a certain i = k then all negative (positive) is a sufficient
but unnecessary condition for the uniqueness of z*. It ensures §; and (¢, — &;) having the same sign and
therefore the monotonicity in g(z). This condition looks natural in the single curve framework as coupons
are positive, but it may not hold in multi-curve framework (see section 8.5). However, even if the condition
was not satisfied (i.e., the §;’s change several times of sign, S0 do the c;’s) and the monotonicity in g(z)
could not be guaranteed, there would still be a good chance to have a unique z*, especially when the sizes
of irregular §;’s are reasonably small [39]. Nevertheless, if the z* is however not unique, the exercise
domain of an option will be a union of disjoint intervals rather than a single interval, calculation of the
integral must then be done by numerical integration methods.
8.4.2.3. Two-Factor Model: Numerical Integration

In 2-factor model, it becomes a bit more sophisticated. Again, we start from the payer swaption

price in (298) and convert it explicitly into two factors z; and z, with joint density f(z,, z,)

b +
vian=| | (Z 5 exp(—fl;izl—fz;iz2)> (1, 2,)dz; dz,
RR \i=a

(312)

z2 + 222)

1
and f(zy,2,) = >~ €Xp <— 3

where we define
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T
D= |(Ps,T,T,T| = Q11922 — (sz: Qij = [(ps,T,T,T]i‘j = f Ei;u,TUi;uPijUj;qu;u,Tdu (313)
S

The double integral in (312) can be reduced into a single integral by using the aforementioned
Jamshidian’s trick, that is, for any given value of z;, we can find a unique solution z; such that the swap

payoff h(z,) equals zero

b
h(z3) = Z 6; eXp(_Bl;T,iZ1 - BZ;T,iZ;) =0 (314)

1=a
By the same argument, we can show that h(z,) < 0 if z, < z; else h(z,) = 0. As such, the payer

swaption price becomes

w b
Vsl?7§,a,b = f j Z 6; eXP(_B1;T,iZ1 - BZ;T,iZZ) f(z1,2,)dz, dzy
R *

%2 j=a
(315)
b [o.0]
= j z 6; exp(_Bl;T,izl)f exp(_BZ;T,iZZ)f(ZIJZZ)dZZ dz,
R i=a z3
We can calculate the inner integral in (315) using (310) as
f exp(_BZ;T,iZZ) f(z1,2;)dz,
z;
_ foo 1 exp <—B o Q2227 — 20122125 + ‘P11222> dz
2 2D 2tz 2D 2
1 P27 foo P1175 V1221
= - — —\Byr; — d
(316)

1 D Zi\2 z? 7z, — B, :D
_ exp< (BZ;T,i _ P12 1) _ P22 1) 1—CI><Z§ P11 P12Z1 2T, )

V2P 2011 D 2D D V@D

_ 1 exp <DB22;T,L' _ $12B2;1i21 n 03,27 _ <P22212> o <‘P1221 — By,r, D _ @)
V2114 2911 P11 2¢011D 2D J©o11D N'D

1 <DBZZ;T,L' — 2¢12Bari21 — 212) <<P1221 — By D . ‘P11>

exp P -

V2mp1q 2011 V®11D & D
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Using (316) to substitute for the inner integral in (315), we find

b [ee]
Vs},)7§,a,b = J. Z 6; exp(_Bl;T,izl)f eXp(_Bz;T,izz)f(Z1'Zz)dZZ dz,
R i=a z3

DB3ri — 2012Boiza — 23 )db <<P1ZZ1 —ByriD

5; L By Pu
fzb: LeXp< 2011 1;T,i%1 W 220D p (317)

Ri=a V2T

Bri@strrBT1) ﬂ)
2

where §; = ¢;P; exp (—Il’

This integral can be calculated numerically, for example, by Gauss-Hermite quadrature?, to form a semi-
analytical formula.
8.4.2.4. Multi-Factor Model: Swap Rate Approximation

It is awkward to calculate the integrals numerically when efficiency is highly demanded. Instead,
we may seek an approximative but sufficiently accurate solution for the swaption price. Knowing that a

swaption is actually a contingent claim on swap rate, we may price the payer swaption using (88)

b

+ Pt, - Pt,b b
ViR ap = AYPEZD [(Sg.b - K) ] Sf’b = ZT' AP = Z TPy (318)

t i=a+1
The swap rate Sf'b for s < t < T is a martingale under the swap measure Q*? with annuity A?'b as the

numeraire. We may express its dynamics in terms of the stochastic factor x; in (289), that is

a,b

as ~
dst‘-l,b = ()dt + a; O-tth =]t0-thVta,b (319)

where J; is the Jacobian (a row vector) of Sta'b with respect to factor x,. Based on the bond price (292),

the k-th element of J, reads

A 12-point Gauss-Hermite quadrature would be able to provide sufficient accuracy.
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a,b b
05" _ PeaBita | PevBiien | Pra = Pep Zi-a+1 TiPriBre,i

axk A?’b A?:b A?,b A?'b
b (320)
Pt,b Pt’a Sab
= AP k;t.b AP Bi;t,a 4ab T;PtiBi.t,i
t t t j=a+1
and hence
(L if i=a
,b -
A7
S TPy . _
] = 1’ Zﬂt,iBt,i for Nei = < T if a+1<i<b-1 (321)
] t
(1+S°7,)Pey _
jab fi=»b
L ,

Fixing the stochastic term P,; and A?'b in n,; with their values at start time s (i.e., using the trick of

“freezing the initial values™), we can have an approximative but deterministic Jacobian vector J such that
ASEP = Jeord W for  Jo =1 ) ngiBy, (322)

This approximation shows that the martingale S,f"b is (approximately) normally distributed under Q%?
measure and its total variance, denoted by v, can be calculated by

v= f Jo0poyfidt = f ﬂ'anLB“atpathmB“ndt— Z Mame Ml (329)

ij=a
with ¢ r; ; defined in (229) for b, = B, ro,. The payer swaption can then be priced using Bachelier
formula

VsTab _ Aab[Eab [(S’Iq,b _ K)+] _ A?,bIE?,b [(Sf’b +Z\/§—K)+]
(324)

Sab K Sab K
a,b a,b _ ab ab _
= AC j(s +2yv —K) §p(2)dz = (Ss K)‘I’< NG >+\/_¢’< 75 )

where Z is a standard normal random variable. Similarly, we can derive the receiver swaption formula as
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a,b __¢cab

K-S S
Ve = A2 (o - 530)] = 20 (- 52y (F2 )+ vip (2 ) | @)

8.4.3. CMS Spread Option Approximation

A CMS spread caplet!, with a payment usually occurs at T, is typically valued by
CMSSC __ T ab __ ccd AT _ p ab _ ccd AT
VEMSSC = py BT |Pry(SFP = S74 = K)' | = Py ER [(S7° - 557 = K) | (326)

fors <t<T<T,=T,<T,<T, <Ty The > and S7'* are two CMS rates fixed at T with different

tenors (e.g., 2Y and 10Y). In order to compute the expectation, we need to find the joint distribution of

the swap rates under T,-forward measure.
Given (292), we can write the dynamics of the bond P, and then the annuity A‘t"b in (318) as

dPt,p = dPt,p (Ttdt - ﬂ,Bt,po-tth)

b b (327)
dA?,b = Z TlPt,l(Ttdt - ﬂ,Bt,io-tth) = A?’b (T‘tdt - ]l, ab z TiPt,iBt,io-t th>
i=a+1 t ji=a+1

Using formula (30), we can change from the swap measure Q®? with annuity A?'b as the numeraire to the

T,,-forward measure with bond P, ,, as the numeraire

b b
0;
dVVta'b = dVth + p <_O-tBt,p + Athb Z TiPt,iBt,i> ﬂdt = dVth + pO’t z Wt,iBt,i ﬂdt

t i=a+1 i=pa+1

328
-1 if i=p (328)
for  w; = TPt

a,b
t

if a+1<i<bh

An approximation can be made by freezing w, ; at start time s. And then substituting (328) into the swap

rate dynamics (322), we find that

! Here we talk about CMS spread option we mean a CMS spread caplet/floorlet.
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>~ JyordW, +ﬂ'2n“3tlatpat Z Wy, B, ; 1dt

= j=p,a+1
(329)
b b
=]SO_thth + Z z T]s,iWS,jHIBt,io-tpo-tBt,jﬂ dt
i=a j=p,a+1

The swap rate is (approximately) normally distributed under T,,-forward measure with mean and variance
as
b b b
B2SE] =524 )" Y mwalaril, VESE] = D memeierl (330
i=a j=p,a+1 I,j=a
If we denote 6, = Sta'b — Stc'dthe spread between the two swap rate, because each swap rate is normal, the

spread is also (approximately) normal with mean and variance as follows

b b a  d
u=EP[6;] =S —S¢% + z Z Ns,iWs ;1 P11 — z Z Ns,iWs, j1' P, j1

i=a j=p,a+1 i=c j=p,c+1
(331)
b d
v = vp 6T Z Ns,iMs ]ﬂ lpsTL]Il + Z s, kr]slIl l/JsTklIl z z s,iT’s,kﬂ’l/)s,T,i,k]1
i,j=a k,l=c i=a k=c

Hence the CMS spread caplet and floorlet can be priced using Bachelier’s formula as

Vs(,:'IMSSC =Ps,pE§[(5T_K) P [Ep [(H+Z\/__K) ] Rgpj(,ll‘FZ\/_ K) ¢(Z)dz

((u e (= = >+\/_ o (= \/_K)> (332)

VEMSSF = pEP[(K — 67)*] = ((K ©w® (K\/—_“> + \/_¢( \/_.U))

In the case of a digital CMS spread caplet (or floorlet) that pays $1 attime T, if 6 — K > 0 (or 67 — K <

0 for floorlet), its value at time s can be priced by

u—K
Vs(,:TMSDSC - Ps‘p]EI;[]l{(gT_K>0}] =P CD( N ) (333)
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K—p
G = B[l syom] = Rp® (—=E)

8.5.  One-Factor Hull-White Model in Multi-Curve Framework

In practical applications, the short rate model in (295) usually takes a time-invariant x along with

a (deterministic) piecewise constant o, such that o, = g; Vt;_; <t <t;, which effectively defines a

Linear Gaussian model (a.k.a. Hull-White model). The reason a time variant x is not in favor is that it

makes the evolution of forward rate volatility strongly non-stationary. This has been intensively discussed

in [40]. In the case of single factor model, the short rate and its driving process further simplifies into

0fs.t

at + (ps,t,t,t - th) dt + O-tth Wlth

Tt = for + X6 dry = (

t
Xt = Xsttt T ] Ey t0u,dW,, dx; = (Qﬂs,t,t,t - th)dt + 0, dW,
S

where by a constant k we have

E p = e *T-0, lin(l) E,;r=1 and
K—
T 1 — p—K(T-1)
Bthf Ejdu=——  limByy =T —t
: o rc am by,

(334)

(335)

With the assumption of the piecewise constant volatility o;, the auxiliary variance/covariance terms

defined in (229) can be further specialized into

¢ t
_ E -E. -o2du = O.Ze—K(T+V) .
(ps,t,T,V - u,T=u,V%%u - i VL;Z
s

N

t
—kT _ —k(T+V)
2 e Yi;l e )/i;Z

t
_ 2 _
XstTV = f EyrByyoydu = Z 0;
S

S

K

t

2 Yio = (€7 + ey + e Ty,

K2

t
— 2 — E
ws,t,T,V - j Bu,TBu,VUu du - O-l
S

N

t; emcti _ enKti—l

where  y;, = f edu = for n=0,1,2
t

. nKk
1-1
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When k — 0, they reduce to

t

¢
: _ 25 _ E 2
lim@g 7y = f osdu = 060
K—0 s

N

t
t
lin(l) XstTV = f (V —w)oidu = Z Uiz (V5i;0 - 5i;1)
K—
S
’ (337)

t

t
lim sury = [ (T =00 = wokdu =Y o (TV80 = (T + V) +6:2)
S

N

udu = for n=0,1,2

i-1

t; tin+1 _ tln—-i-ll
where 5i;n = T E—
t

Note that we always have y;., = 6;.0 = t; — t;—1.
In the following, we will discuss the model and its calibration as well as its numerical methods in
product pricing. A good reference that covers this topic can be found in [41].

8.5.1. Zero Coupon Bond

Let us write the total variance of a forward bond P; 1, as in (296) by

t
fsz,t,T,V = BTZ",V f E&,Tai du = B%,V‘Ps,t,T,T (338)
S

The forward bond price (293) becomes

_ ll’s,t,V,V B ll}s,t,T,T 5
=€exp|— 2 — ot vilst

1 t t (339)
= exp <— EB%’V f EIiTO'I%du — BT,V f Eu,TO-uquT>
N S

= ex <—152 — & vl )
p S SSLTV stTVLst

_ p2
¢s,t,V,V - l»bs,t,T,T = BT,V ¢s,t,T,T + 2BT,V)(s,t,T,T
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where Z, and ZI, are standard normal random variables under risk neutral measure Q and T-forward

measure Q respectively, and are independent of F;. The (spot) bond price P, , which is equivalent to

P, ¢ 7, reads
Ps,r Yserr — Ys et ~
Per = Ps—exp (‘ 2 > 2 - Es,t,t,TZs,t) (340)
st

8.5.2. Constant Spread Assumption

To simplify the modeling, we may assume constant spread between the projection and the discount
curve. In the following, two types of assumptions are discussed. The first to be considered is the constant

additive spread, which assumes a time-invariant spread between the i-th Libor rate L ; and the rate L, ;,

that is
. 1 (P(t.fis) P(tfis)\ _ 1 (P(s.fis) P(s fis)
6 =Ly =Ly =—\ 5 - =—\3 - (341)
Cif \P(t.fie) P(t.fie)) Cir\P(s.fie) P(5 fie)
where L, ; is the counterpart of L, ; estimated from the discounting curve
_P(t.fis) = P(t, fie)
ti = (342)
Ci'fp(t, fi,e)
The second is constant multiplicative spread, which assumes that the quantity
_P(tfisfie) _ P(s fus fie) _ P(S fie) P(s fis) )
© P(tfisfie) P(sfisfie) P(sfis) P(s fie)
is time invariant for the i-th Libor rate L, ;. And hence we have
- n,—1
Lei=mile; +— (344)
Ci,f

This is indeed equivalent to assuming constant additive spread between continuous compounded zero rates
of the projection and discount curve. In general, we would expect §; > 0 and n; > 1 to account for credit
and liquidity spread between the two curves.

Note that under either assumption, the L, ; can be expressed as an affine function of the L, ;
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Lei=aiLy; + B (345)

with a; =1, f; = 6; in constant additive spread assumption and a; =n;, B; ="if_1 in constant

Cif
multiplicative spread assumption. Since the L, ; is a martingale under f; .-forward measure, so is the L, ;.
Assuming constant spread implies that the dynamics of projection curve and discount curve both
are driven by a common stochastic factor, e.g., Z . in (340). As for simplicity, it is often in favor of the
constant multiplicative spread (343), under which the projection curve and the discounting curve share

similar rate dynamics, such as

P, T _ P(t,T) — ex (_ Yserr — Usett . 7 )
p(S, t,T) P(stT) 2 sttT4s,t
(346)

2
Es,t,t,T 5
= exp (‘ 5 BirXstir — fs,t,t,TZs,t>

8.5.3. Caplet and Floorlet

Following the notation of swap schedule defined in chapter 3, a Libor rate cap with expiry T can

be priced at time s as a portfolio of caplets

m m
; ~ +
VERR = D VS = PCs pOEY [(Bryi — K) v (347)
i=1 i=1

The i-th caplet, under the constant spread assumption, can be valued using (345)

T/~ + ) K — :8 +
VPt = P(s, p)ES! [(Lfi,i - K) Ci,a] = a;ciqP(s, p)EL [(Lfi,i B l) l
L

(348)

P(fl' fi,e) a;

Cif

= ;22 p(s, p V" [(P(fi'fi.s) _aite (K- ﬁi)) ]

If ignoring the difference between payment date p; and fixing period end date f; ., the bond price ratio

P(firfi,s)

") is a lognormal martingale under p;-forward measure and hence the caplet price (and similarly the
v/ie

floorlet price) can be calculated by Black formula (81) as
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a;+ ¢ s(K—B) P(s, fis) 2 1)
a; ’ P(s, fi,e) 'Ss.fufisfie’

VCPL = alC—P(s pl)§B<

iLf
(349)
C a; +¢c; K — i) P(s, i
Ci,f a; P(Sifi,e) Jilis]ie
with &2, 1., defined in (338).
Alternatively, we transform (348) into
+
C; , P t, i a; + Ci K — i
VSFiPL — aiﬂp(s, pi)]Ezgl < ( f,S) _ ,f( B )>
Cif P(t fie) a;
+
P(t.fis) ai+cif(K— ﬁ-))
fi i,s i if i
— _p E/: -, — 350
(s, fOEL |P(fipi) (P(t, o . (350)

' | i T Cif(K—p; '
=aiil_—’;P(s,ﬁ-)IE£‘ <P(ﬁ-,ﬁ-,s)—“ tat B)p(fi,fi,e)> ]

where the last equality holds if assuming the p; coincides with f; .. Under f;-forward measure, the bond

P(f;, T) is a lognormal martingale and its price can be derived from (339) such that

1
PUT) = P(s i T) exp (_ 257~ fTZfi)‘ §7 = Sorurur = BrrPssorur (351)

Following the argument in section 0, there must be a unique solution z* for the payoff

i ter(K—pBi
P(ffi) - “HLE b 1) = o
_at iy (K—B) _ P(fi fis) _ P(s. fis) exp (l (E2 —§2) 4+ (¢, — ¢ )z*) (352)
a; P(fi'fi,e) P(S'fi,e) 2 e N e s

—r=— (“i + Ci.f<K—ﬁi>P(s,fi.e)) CGeté
fe - fs & a; P(S, fi,s) 2

where & = &g 5 ror, AN & = &7, 1, 1, .- With the 27, we can calculate the caplet price in (350) by

a; +c; (K —B;)
a

Vet = —P(Sﬁ f <P(ﬁ,ﬁs)— "P(fi.fi,e)>¢<z)dz (353)

i
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, o 2
= q; :—; <P(s,fi15) fz exp (—%s - Esz) ¢(z)dz

. . — D ® :
ot cif (K — By) P(S;fi,e)f exp <_%e — fez> qb(Z)dz)

a;

a;+ ¢ (K — By)
a;

=a; %(P(S: fi,s)cb(_Z* - fs) - P(S'fi,e)q)(_Z* - Ee))

In a similar manner, the floorlet price reads

a; + ¢ r(K—B;)
a

i

Vet = . ( P(s, fis)®(z" + &) + P(s, fie)®(z" + fe)) (354)
It can be shown that (353) and (354) are equivalent to (349) by observing that

2 _ p2 _ 2 _ 2
& rufiofio = BFori®stifisfis = Brufie = Bruris) Pssufor = Ge — &)

(355)
dt=—-2z"-¢ and d =-z"-¢,
When assuming constant multiplicative spread where a; = n; and 8; =
and floorlet price given by (353) and (354) as
Ci P(s, fis)
VEPL = 22P(s,p) | =—25d(—2z" — &) — (1 + Kc; ) P(—2z* —
S,i Ci,f ( pl) P(S, fi,e) ( fs) ( l,f) ( Ee)
C.
ViR =—=P(s,p)| - o), O(z" + &) + (L +Keyp)d(2" +6,) (356)

Cif P(s fie)

ﬁ(sifi,e) _ $e + &5
P(s, fis) 2

1
with  z" = log| (1+ Kcir)
$e —$s

This is the formula stated in Theorem 1 of [41]. Under the constant additive spread assumption where

a; = 1 and B; = 6;, the caplet and floorlet price are

Vs(,:iPL = zl:—’;(P(S, fi,s)q)(_Z* - Es) - (1 + Ci,f(K - 6i)) P(S, fi,e)q)(_Z* - Ee)) (357)
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VIR = Z f( P(s, fis)®(z" + &) + (1 + ¢ (K = 6)) P(s, fie) (2" + Ee))

P(sfie)| & tés

1
with z" = IOg (1 + Ci,f(K - 61)) P(S f ) >
’J LS

Ee _S(s

Note that the difference between c;, and c; ¢ (i.e., fixing and accrual period may differ) is usually
negligible, however it must be taken into account when pricing cap/floors in a rigorous setup.
8.5.4. Swaption

We will follow Henrard’s method presented in section 8.4.2.2 to derive the swaption formula in
multi-curve framework. Following the notations used in Chapter 3, the price of a payer swaption maturing

atT is

+

n
LyicioP(T,p;) — KZ Cj,aP(T; Pj) (358)

VeR = P(s, T)ET

s

By assuming constant spread L,; = a;L;; + ; and p; = f; . = a;, (and hence ¢;, = ¢ r), the floating

leg becomes

m m m
2 iCiaP(T,p;) = 2 LyicioP(T,p;) + Z(ET,i — Ly)cioP(T, pi)
i=1 i=1

i=1

z LriciaP (T, po) + z (€ = Dl + i) 1P (T, )

z LriciaP(T,po) + Z(al -2 P(t fis) + z (ﬁl

= P(T, te) - P(T, tm) + Z(ai - 1)P(t' fi,s) + Z <.Bl - alc—_fl> Ci,aP(T’ pl)

(359)

) ;o P(T,p;)

where t, and t,, are the effective and maturity date of the underlying swap. Using a cashflow
representation for the underlying swap, we can denote the k-th cashflow by d; and write the swaption

price (358) in a more general form
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ViR = P(s, T)EL (360)

(Z dP(T, n))
k

The sum of discounted swap cashflows comprises both floating and fixed leg. Under the constant

multiplicative spread assumption, it has the form
m n
Z diP(T,Ty) = P(T,t,) — P(T, tp) + Z(ni — DP(T, fis) — KE ¢ oP(T.p;) (361)
k i=1 j=1
and under the constant additive spread assumption, it reads
m n
D dP(TT) = P, t) = P, tn) + ) 8i61aP(Tp) =K ) ¢P(T,1;) (362)
k i=1 j=1

The forward bond dynamics under QT is a lognormal martingale, which is given in (351) and

repeated here for convenience

1
P, T = P(s, T T exp (56 —627)  with & = Bir,00rrr (363)

Note that usually we have n; —1 > 0 (or §; > 0), hence the argument (i.e., the d;’s are all positive
(negative) up to a certain k = p and then all negative (positive)) stated in section 0 may not hold.
However, since n; — 1 (or §;) is generally much smaller than notional 1, it is almost certain to have a

unique solution z*, such that
1 2 *
> b (s, T exp (=58 = gz’ ) = 0 (364)
k

The payer and receiver swaption can then be priced using formula (309) and (311) respectively (with z*

defined differently!), that is

Vet = Z dpP(s, T )P (—z" — &), Vet = Z dpP(s, Ti)P(z" + &) (365)
K K

It should be noted that, in practice, underlying swap of a swaption with exercise tenor of T (e.g.,
mM period) is different from a swap forward starting in a period of T. Effective date of the former is

computed as the swaption exercise date plus the swap spot lag, and the exercise date itself is computed as
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today plus the exercise tenor using the relevant calendar and the business day convention of the underlying
swap (e.9.,t. =t, DT @ A;). The later however has an effective date t, = t, @ A, @ T. This may
introduce a difference of a few days between the two swaps.

8.5.5. Finite Difference Method

Let us denote U(t, x;) the value of a derivative driven by the stochastic process x; in (334). Under
risk neutral measure, its evolution is governed by the drift-diffusion PDE (158) with drift u; ,, = @ —
Kkxe, volatility o, ,, = o, and risk-free rate 1., = f; . + x,, where the quantity ¢, ., is givenin (336). The
PDE can be solved numerically using the finite difference method introduced in section 6.2.

Noting that the driving process x; has a drift term due to continuous change of measure (as
explained in Section 7.2). Such drift is generally not favored by finite difference method. Hence, we may

re-express the short rate in terms of a risk neutral martingale process w, such that

t
Wy = X — XS,t,t,t = j Eu’tO'uqu, d(l)t = _K(Utdt + O-tth
S
(366)

v t t
Wy = v,tj Eu,vauqu +J Eu,to-uqu = By Wy +J Eu,to-uqu
s v v

With ¥ ¢ ¢ in (336). The w, is normally distributed with mean 0 and variance @, ., = f; EZ,0Zdu. With

this definition, the zero coupon bond is given as

B Pgr 1 .
Pir = R ) exp\— EBt,T‘Ps,t,t,t — BerXsttt — Berwe (367)
s,

and the short rate (334) becomes

0fse o
1= for + Xsttt T Wt dry = ( ai T Qs ittt — KXsittt — K‘Ut) dt + 1o, dW; (368)

The derivative price U(t, w,) driven by the process w; is also governed by the drift-diffusion PDE (158)
with drift u, ,, = —xx,, volatility o, , = o, and risk-free rate 1y, = fo ¢ + Xstre + @¢,. Alternatively, the
price U(t, w#) can be evaluated under Z-forward measure associated with numeraire P, ;. The derivative

payoff is contingent on the stochastic process w# which has the form
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t t
Z _ zZ _ Z Z _
wy = f Eu,taud% - Ev,t(‘)v +f Eu,tguqu = Wt +Xs,t,t,Z
s v

(369)
dwf = —kwidt + o, dW,?
through the change of measure (294), e.g., in 1D
thZ = th + Bt,ZUtdt (370)
The dynamics of the numeraire can be derived from (292)
Pz — T — Z 2 2 Z
= 1 dt — By z0,dW, = (fst — Bt z@sttt + Wi + Bt z0f )dt — By z0,d Wy (371)
t,Z
where the short rate (368) by (288) becomes
Te = for + Xstet T ©Or = for — Bez@srre + WF, Biz@s et = Xsttv — Xstet (372)
Hence, the derivative price U(t, wZ) must follow the PDE in (157) with
of 2 z z 373
a=-—= b = =B z0{ + kwy, C = fst = BezPsiter + 0t (373)

The PDE can then be solved accordingly.

8.5.6. Monte Carlo Simulation

In simulation, the most essential ingredient is to simulate the state variable (can be multi-
dimensional) that determines the state of the yield curves and the numeraire. American/Bermudan style
options can be priced using least square Monte Carlo (LSMC) method proposed by Longstaff and
Schwartz in 2001 [42].

Let s=Ty <+ <T; <--<T, be an array of anchor dates (shown in Figure 8.1; e.g.,
exercise/cashflow/payoff payment dates). Firstly starting from s = T, the state variable x; ; is simulated
in a forward manner for the i-th time step and j-th path based on the conditional distribution of x. The
yield curves P, ;(¢t,T) and P; ;(t,T) and the numeraire N; ; are then determined by the simulated x; ;.
Under different equivalent martingale measures, expressions for these quantities may differ. We will
discuss these in detail for two measures that are commonly used in simulation: the risk neutral measure

and the Z-forward measure.
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Figure 8.1 Two consecutive exercise dates of a Bermudan style option
Once the simulation paths are obtained, the LSMC method will be employed in a backward manner
on the simulated paths. At exercise time T;, there are two values for each path: 1) the immediate exercise
payoff value S; ; estimated from ﬁi,j (t,T) and P; ;(¢t,T) and 2) the continuation value C; ; (i.e., the value
of holding rather than exercising the option). The option holder compares the exercise payoff S; ; with the
conditional expectation of the continuation value fE'i[Ci,j] and exercise the option if the payoff value is
higher. In the LSMC method, the conditional expectation, which is a function of state variable x; ;, is

approximated by a linear combination of basis functions

G(xi;) = E[Cy ] = Z aipre (i) (374)

k

where the basis functions p,(-) can be a set of orthogonal polynomials (e.g., weighted Laguerre
polynomials). In fact, as it has been pointed out, even simple polynomials p,(x) = x* vk = 0,1,--- can
serve the purpose very well. The factor loadings @ are estimated by regressing C; ; on py (xi,j) for all the
in-the-money (i.e., exercising the option is economically advantageous) paths (denoted by I;) using the

linear model

Ci,j = Z akpk(xl-,j) + Ej V] € IL' (375)
k

The out-of-the-money paths are excluded because they give the holder no choice but to keep holding it.
This makes them less relevant to the estimation of the conditional expectation. The number of basis

functions to be included in the regression (i.e., the upper bound for k) depends on the shape of the function
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G(xl-,j). If the function is ill-shaped?, higher degree of polynomials are desired to provide a better fit. Since
the regression model is only used to make in-the-sample estimations, oscillation effect of higher degree
of polynomials should not be an issue. In practice, the treatment of S; ; and C; ; differs from one product
to another. Table 8.1 summarizes the formulas for two different products as examples, both have
Bermudan style option embedded.

Table 8.1 Bermudan style interest rate products

Product Bermudan Swaption Bermudan Cancellable Swap?
Exercise Payoff Value® | S;; = V;.; Si;=0
o N; ; Nij
Continuation Value Cij=Ciyrj7 Cij = Viir1;j + Ci+1,jN—
i+1,j i+1,j
In'the-money Paths Ii = {] Vi,n;j > 0} Ii = {] Vi,i+1;j < 0}

The backward evolution eventually leads to a present value of a product at time s for each
simulation path. Average of the present values gives an estimate of the product price.
8.5.6.1. Simulation under Risk Neutral Measure

Under risk neutral measure, we know that the factor w, in (366) is normally distributed and the

numeraire (i.e., money market account) M, can be calculated as

t 1 t t
M, = exp (f rudu> = —exp (f XspordV +f a)udu> (376)
s PS,t s s

The integral fst XsvvpdV in (376) is deterministic and can be calculated analytically as

t t v t ot 1 rt
] XswprdV = ] j Ey By y0idudv = j J Ey By ,dvaidu = > f BZ, ;zuaﬁdu
N N N N u

N

(377)

1t 5 1
= EJ B t0% du = Ed)s,t,t,t
S

L1t is likely to have ill-shaped conditional expectation function if the option payoff is not simple. For example, the Bermudan
cancellable range swaps may demand k > 5.

2 Cancellable IRS can be regarded as a portfolio of a vanilla IRS plus a Bermudan swaption. For example, we may write:
Receiver IRS + Bermudan Payer Swaption = Receiver Cancellable Receiver IRS

¥ The V; ,,,; denotes the value of a swap starting at T; and ending at T,, given state x; ;.
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with ¥ .7 given in (336). Further, we define
t
0, = f wpdh (378)
S

Based on the conditional w; in (366), we can write the conditional 6, given F, fors < v < t as

t

t t rh
6, =6, + f wpdh =6, + w, f E,pdh+ f f E, no,dW, dh
v v v v

(379)
t t N t .
=0, + B, w, +f f Eypdho,dW, = 6, + B, tw, +f By r0,dW,,
v u v

In summary, the x, and y, are jointly normally distributed with their conditional mean and variance as

S e A T -

while the conditional correlation between w, and 6; is

t
2
fv Ey By roigdu Avttt

pv,t = : : = \/ lp
\/fv Eitaﬁdu fv Bitaﬁdu PotttWoett

(381)

In fact, the x, . ¢+ is also the covariance between the short rate . and the money market account M,.
In simulation, the state variable (w, 8) is actually in 2D. The variable w drives the yield curves
while the variable 6 determines the numeraire. The simulation starts from (ws, 6;) = (0,0) and for each

time step from v = T;_; to t = T;, simulation generates (w,, ;) by (380)

we = Eyp ey, + /@yt eBre 0 =0y + By iy, + Wy et <pv,tN1,t + /1 — Pt BZ,t> (382)

where B, and B, . are two independent standard normal random samples and the correlation p,,, in
(381). From the simulated (w;, 6;), we can derive the yield curves by (346) (under constant multiplicative

spread assumption) and the numeraire by (376), that is

Per Per Earer 1 (lpst”
bl _ b _SsttT _ p - B , N, =M, = "'+9>383
Pser Pstr =P 2 LT st = Srr®t t TP, €Xpl\—, ¢ )(383)
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8.5.6.2. Simulation under Z-forward measure
Under Z-forward measure, the yield curves P, » and P, ;- and the numeraire P, , are all driven by
the common stochastic driver wZ defined in (369). The wZ has an initial value wZ = 0 and is normally
distributed with conditional mean and variance as
EZ[wf] = Ev,t(‘)g' Vilwf] = Putt,t (384)

Given the state of w?, the yield curves and the numeraire can be derived from (346) and (369) as

P tT Pyr B?,T
ps,t,T - Ps¢r = exp| | Berbez = 2 Pt — Berwf

(385)

P 7 Btz,z‘Ps,t,t,t 7 sz,t,t,z 7
Ny =Pz = p €xp > — Bzt | = P57 €xp 2 B zwi
st

It should be emphasized that the volatility of the numeraire P, ; increases as the maturity Z extends, hence

in order to have faster convergence rate, it is better to have the Z no later than the trade maturity.

8.5.7. Range Accrual

_____________________________________________________ ‘r_________________>
T‘ Op - t
= [ ) A o T
>l 5 ,|
S Ds Tf\rs Pe /‘[e
——
L,

Figure 8.2 One coupon period of range accrual
This section is based on Hagan’s work [43]. For a common range accrual, the fixed leg coupon
payment depends on the number of days in the coupon period (e.g., between p, and p, as shown in Figure
8.2) having fixed Libor rates in a specific range, say [ < L, < u V T € [ps, p.]. In other words, the period

p coupon is determined by

R #{1 € [ps,pel : Ly € [I,u]}

C
p Mp

p =20

’ Mp = {T € [ps; pe]} (386)

where &, is the coverage (year fraction) of the coupon period and R is the contractual fixed rate. The

coupon payment can be valued by replicating each day’s contribution in terms of vanilla caplets/floorlets
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and them summing over all days 7 in the coupon period [ps, p.]. Suppose the day t Libor rate L, is fixed

at day  for an effective (start) date =, and maturity (end) date 7, with a coverage &,. On the fixing date,

the value of contribution from day 7 is equal to the payoff

_ pR (1 ifL, €[Lu]
VT(Tf, pe) = P(Tf,pe)M—le{LT € [Lu]} where 1U{L,€[lu]}= {0 otherwise (387)
Let us define the value at t of a digital floorlet L, with strike K as
E(t,K) = P(t, T.)Ef*[YL, < K}] = P(t,7;)E/[P(7, 7. )U{L, < K}] (388)

If L, < K, the digital floorlet pays one unit of currency on the maturity of the Libor rate, otherwise pays
nothing. So on the fixing date 7, the payoff is known to be

E (17, K) = P(z7,7.)1{L, < K} (389)
We can replicate the coupon payoff in (387) by going long and short digitals struck at [ and u respectively,
this yields

8,R

~ “ 0, R
M_p(FT(Tf'u) — FT(Tf, l)) = P(Tf,re)ﬂz—p]l{LT € [l ul]} (390)

This is the same payoff as in (387), except that the digitals pay off on z, instead of p,.
Before fixing the date mismatch, we note that digitals are considered vanilla instruments because
they can be replicated to arbitrary accuracy by a bullish spread of floorlets. Let us define the value at t of

a standard floorlet on day t Libor with strike K as

E(t,K) = P(t, 7.) 8 Ef [(K — L)*] = P(t,7,) 8. E. [P(17, 7. ) (K — L)*] (391)
So on the fixing date, the payoff is

F(t7,K) = P(t5,7.) 8. (K — L,)* (392)
The bullish spread is constructed by going long Flar floorlets struck at K™ = K + ¢ and short the same

number struck at K~ = K — €. This yields the payoff
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1 ifL, <K~

1 _ K+e—-L o
E(E[(Tf, K+) - FT(Tf,K )) = P(Tf,Te) ' z—gk ifK~ < Lk < K+ (393)
0 ifL, > K*

which goes to digital payoff as € —» 0 (usually ¢ takes 5bps or 10bps). Hence, we have

Fi(zp, K*) — Bz, K7)

7 — T 394
Al K) = lm =5, (390
To handle the date mismatch, we rewrite the value of contribution in (387) as
P(ts,pe) §,R
V.(7s, =——<P(16,7.)— WL, € [Lu 395
T( f pe) P(Tf,Te) (f e) Mp { T [ ]} ( )

The ratio P(ty,p.)/P(ts,7.) is the manifestation of the date mismatch. To handle the mismatch, we
approximate the ratio by assuming the yield curve makes only parallel shifts over the relevant interval.

Suppose we are at initial date ¢t = s, then we assume that

eXp(—LT(Te - pe)) _ exp (_Ls,r(Te - pe))
P(TfJ pe; Te) B P(S’ pe'Te)

=

P(Tf’ pe) — P(S: pe) eXp(Lr(Te - pe)) . P(S; pe) 1+ Lr(Te - pe) — P(S, pe) 1+ 7761'['1' (396)
P(Tf; Te) P(s, Te) exp (Ls,r(Te — pe)) P(s, Te) 1+ Ls,r(Te - pe) P(s, Te) 1+ n6TLS,T

Te — Pe
Te — Ts

where n=

This approximation accounts for the day count basis correctly (is exact when p, = t,) and is centered
around the current forward value for the range coupon. With this approximation, the payoff from day

becomes

o, R
Ve(tr,pe) = P(77,pe) M”—pﬂ{Lf € [Lul} = A.P(z7, 7)1 + 06, L)UL, € [I,ul}

(397)
B P(s,p.) 1 O,R

~ P(s,Te) 1+ 16 Ls, M,

where A,

The A, can be regarded as an effective notional fixed at date s. One can replicate the payoff in (397) by

going long and short floorlet spreads centered around [ and u.
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To make it more general, let us consider
(6K, &) = (14+1n8,(K+¢)C(t,K—¢)— (1 +n5.(K—€))C.(t,K +¢)
fi(t,K, &) = (1+n6,(K—&)F(t,K +¢)— (1+n6.(K +¢))E(t, K —¢) o
where using the analogy of floorlet we define C,.(t,K) = P(rf, 7,)8. (L, — K)* the value on date t of a

standard caplet on day 7 Libor rate with strike K, whose payoff is C;(t;, K) = P(ts,7.)8,(L, — K)*.

Considering a floorlet spread

f(tK, &)
& —
Vet pe) = A — —— 3. (399)
Attime t = Ty, it has the payoff
1+n6,K)K*—-L)"— A +n6,K)(K~—L,)"
VEE(Tf;pe) =ATP(Tf,Te)( 77 T )( T) 28( n T )( ‘L') (400)
When L, > K* the V;¥(zf,p,) = 0 and when L, < K~ the payoff becomes
1+n5,K)K*—L)—(1+n6,K*)(K~—L,)
VTE(Tf'pe) = ATP(Tf'Te) - - 2¢ - -
(401)

(K*—K7) +n6 (K" —K7)L,
2¢&

= ATP(Tf,Te) = AT(‘L’f)P(Tf,‘L’e)(l +ndé.L;)

(The Vf(rf,pe) also has linear ramps for L, € [K~, K*]). Hence, in the limit € - 0, this is equivalent to
ViE(tf,pe) = AP (15, Te) (1 + 18, L) YL, < K} (402)

Similarly considering a caplet spread

c;(t,K,¢)
VTS (tr pe) =A; TZT (403)
T

Attime t = 1, it has the payoff

(1+n8 KL, —K)" = (A +n6K )L, —K)*

— (404)

Ve (7, pe) = AP(14,7e)

When L, < K~ the Vf(rf,pe) = 0 and when L, > K™ the payoff becomes
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(1+n8 KL, —K) -1 +n8K)(L, —K")

VE(tr pe) = AcP (75, 7e)

2¢e
(405)
(K* —K7) +n6,(K* —K")L
= A.P(z7,7,) 2; £ = A.P(t5,7.)(1 + 06, L,)
Hence, in the limit € — 0, this is equivalent to
VE(ts,0e) = AP (15,70 ) (1 + 8. L)L{L, > K} (406)

Basically (399) and (403) are our building blocks. Using the caplet/floorlet spreads above, we are
able to construct various rate ranges. For example, the floorlet spread portfolio

ftue) - f(tlLe) 2 c:(t,u,e) —c (t, 1 €)

& —
Vet pe) = Ac 255, : 755, (407)
has the payoff
VE(t7,pe) = AcP (77, 70) (1 + 18 L)UL, € [Lul} (408)

which is the same as in (397).
The time t value of one period coupon payment of a range accrual is then given by summing the

value contribution over all the days 7 € [ps, pel
ACEDWATN (409)
T

For vanilla range accrual swaps, the floorlets in (407) can be priced by Black model using implied
caplet/floorlet volatility. Cancellable range accruals are usually valued in, for example, Hull-White model,

where the floorlet price is given in (356), that is

P(t,t)
P(t,t,)

E(t,K) = ViR = P(t, 7,) <— P(z* + &)+ (1 +K5)P(z" + Q))

(410)
log ((1 + K8,)P(t, TS,Te)) &y — &
B Ee - fs - 2 ,

*

VA

ES = f(t' TfﬂTfﬂTs): fe = f(t, Tf,‘[f,‘[e)

We may write the present value of the coupon as
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1
V,(t) = P(t,p.)6,R6, where 0, = M_pz 0, (411)
T

The 8, can be treated as an overall contribution coefficient, while the 6, comes from each day z, which

can be calculated as

V’L'g(tJ pe) — f:[(tl u, E) - f:[(tl l; 8)
P(t, pe)fﬁ—f 288:P(,7e) (1 + n8eLey) (412)

0, =

8.6.  Historical Calibration of Hull-White Model via Kalman Filtering

The short rate model we want to calibrate has a general form derived from (295)

0fs.t
ot

1= for t Uxser el + Ty, dre= ( + ﬂl(¢s.t,t,t - Kt)(s,t,t,t)]l - ﬂl"t“’t) dt + 1'o,dW,

, (413)
(Ut = xt - XS,t,t,tﬂ = .f Eu,tO'uqu ) dwt = _Ktwtdt + O-tth
N
where the stochastic driver w, is a risk neutral martingale defined in the same manner as in (366), and the
@sery and yg .7y are given in (229).

8.6.1. Market Price of Interest Rate Risk

The data we use to calibrate our model are historical observations of yield curve. It is organized as
a time series of zero rate term structure. The zero rate, defined as Z, , = — %log Py ¢+ for a maturity = >

0, can be expressed in Linear Gaussian model (i.e., the Hull-White model) by bond price (292)

P T 1 i !
Pr = _PS' €xp (‘ E]l Bir®st,t,tBerl — ]1'Bt,T)(s,t,t,t]1 -1 Bt,th)
st
(414)
Ps,T

= exp (—Il’
P

lps,t,T,T - lps,t,t,t
2

ﬂ - ﬂ’Bt'th)

with g7y in (229). It should be noted that calibration to historical data differs from calibration to
derivative prices. Derivatives must be priced under risk neutral measure to satisfy arbitrage-free condition,
whereas historical data series are collected under physical measure. The change of measure from one to

another can be done by introducing a market price of interest rate risk process 4, which is often assumed
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to be an affine function of wy, €.9., 4; = n; + 8;w; (this is equivalent to a popular assumption made by
Vasicek [44] [45] [46] where the market price of risk is assumed to be an affine function of short rate ;).
Hence a Brownian motion W, under risk neutral measure can be linked to a Brownian motion W, under
physical measure via

AW, = dW, + A, dt = dW, + (n, + S,w.)dt (415)

The w; in (413) under physical measure becomes
t t
d(l)t == O-tr]tdt - (Kt - 5t)(‘)tdt + O-tthl W = f Eu‘tGu’tO-unudu + f Eu,tGu,tO-uqu (416)
N N

where G, r is defined similarly as E; r

G.r = Diag

nxn

: T

Gitr|, Gi.cr = €xp (f 6i;udu> (417)
: t

Accordingly, the conditional formula for w; shows

t t
W = Ey Gy +j Eu,tGu,to_unudu +f Eu,tGu,tUuqu (418)
v v

In summary, the zero rate and the variable w, form a measurement and state transition system

log Py r 1 P, Yserr — Pstrt
Measurement: Z;p = — — = log—— + 1' —= —1+1B
asuremen t,T T—t T—¢t gPs,T t,T Wt
(419)
t t
State transition: w, = E,,;G,, ;w, +f Ey Gy roynydu +f Ey Gy oy dW,
v v
which are well suited for Kalman filtering.
8.6.2. Kalman Filter
Kalman filter can be used to estimate model parameters in a state-space form
Measurement: yi=a; + H x; + 1, ri~N (0, R; )
nx1i nx1 nxm mx1 nx1i nxn
(420)
State transition: x; = ¢ + F; x;_1+ q;, qi ~N (0, Q; )
mx1 mx1 mxm mxX1 mx1 mXxm
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where r; and g; are Gaussian white noise with covariance R; and Q; respectively. It is designed to filter
out the desired true signal and the unobserved component from unwanted noises. The measurement system
is observable. It describes the relationship between the observed variables y; and the state variables x;.
The transition system is unobservable. It describes the dynamics of the state variables as formulated by
vector ¢; and matrix F;. The vector r; and g; are innovations for measurement and transition system
respectively. They are assumed to follow multivariate Gaussian distribution with zero mean and
covariance matrix R; and Q; respectively.

The Kalman filter is a recursive estimator. This means that only the estimated state from the
previous time step and the current measurement are needed to compute the estimate for the current state.

Define the mean and variance of x; conditioning on the observed measurements y,, y1, -+, y, for h < i

Eyiin = Enlxi] = Elxilyo, y1, -+, ynl

, (421)
Veitn = V[x; = Exjn] = E [(xl — Exin) ]
The procedure generally consists of four steps:
1. Initialize the state vector:
Since we do not know anything about E, o, we will make an assumption x, ~ NV (, )
Exo10 = 1 Violo =2 (422)
2. Predict the a priori state vectorforh =i —1andi = 1,2,
Exin = Eplxi] = Exle; + Fixp + qi] = ¢ + FiEx pn
(423)
Veitn = V[x; = Exin] = V][c; + Fixn + 4; — ¢ = FiExpin] = FiVennFi + Q;
3. Forecast the measurement equation based on E, ;, and V, ;-
Eyin = Eplyil = Epla; + Hix; + 1] = a; + HiEx i)
(424)

Vyitn = V[yi — Eyun] = V]a; + Hix; + 1y — a; — HiEyyyn| = HiVyynH + R;
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4. Update the inference to the state vector using measurement residual z; = y; — E,, ;;, and Kalman gain

Ki:

mxn
Exili = Exiyn + Kiz; and
Viati = V[xi = Exii] = V[xi = Exyn — Ki(vi — Eyin)] = V[U = KiH) (i — Exijn) — Kii]
(425)
= (I = KiH) Voyn(I — KiHy)' + KiRiK] = Vo — 2KiH Ve + Ki(HiVyeinHi + R)K]
= (I = 2K;H)Vy i + KV, i 10 K{
The error in the a posteriori state estimation is x; — E, ;;. We want to minimize the expected value of
the square of the magnitude of this vector, i.e., E; [||xl- — Ex,l-|l-||2]. This is equivalent to minimizing
the trace of the a posteriori estimate covariance matrix V, ;;. By setting its first derivative to zero, we

can derive the optimal Kalman gain K;

atr(Vxﬂi)
9K,

= —2VeunH{ + 2KiVyin =0 = K, =VyunH{V, s (426)
Calculation of V‘l|h involves matrix inverse, however if the R; ! is available and the Vyijn has a much
smaller dimension than V,, ;,, the V_llh can be calculated in a more efficient way using Sherman-
Morrison-Woodbury formula. Given the optimal K; in (426), the Vy.i1i can be further simplified to
Viiti = (I = 2KiH)Va i + KiVynKi = (I = 2KH; )V in + Ve Hi K] = (I — KiH;)Vo i (427)
We recursively generate the residual z; and its covariance V,, ;, by stepping through the above

procedure for i = 1,---,N. The model parameters are then estimated through Maximum Likelihood

Estimation (MLE) by maximizing the log likelihood function of the z; time series:

N
_n -1 1
1(9) = Z log <(27T) 2|Vy,i|h| 2 exp( 2Z Vyl|hz ))
i=1

N
nNlog(2m) 1
_T+EZ(— loglVy,“hl V_’yllhz)

(428)
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We can ignore the constant term and constant multiplier in front of the sum sign, hence maximizing the

log likelihood function 1(8) is equivalent to maximizing the following sum:

N
i(6) = z(— log|Vy,iin| — ziVyijnz:) (429)
i=1

8.6.3. Multi-Factor Hull-White Model

For effectiveness of calibration, the time-dependent coefficients k;, o; and the market price of risk

A are all assumed to be constant. The short rate in (413) becomes

0fs.t
ot

1= for Tt Vxseeel + 1wy, dry = ( + ﬂl(¢s.t,t,t - K)(s,t,t.t)]1 - ﬂl"‘”t) dt +1'odW,

, (430)
Wy = a.f E .dW,, dw,=—kw.dt+cdW,
N
Defining the maturity period t =T — t and a timelines < .- < v < t < -+, the measurement and state
transition systems in (419) read

T
(l)t + Et,T’ Et,T ~ N 0, VZdF
(431)

1 P - B
Zir = ;(logp St g st errer — st ]1> e t,;+r

S,t+T 2
w¢ = BytoA + Eyrwy, + &y, Ept ~ N(O» (Pv,t,t,t)

where we introduce a measurement innovation €, ;. (€.9., the noises recorded in the zero rates). The €, is

assumed to follow a normal distribution with variance vzd:_*, where the d is a user-specified constant (a
value between 0 and 1 emphasizing short maturities or a value greater than 1 emphasizing longer
maturities). The 7* can be thought of as a normalization factor (e.g 1.0 if 7 is annualized) and the v is a
unit innovation volatility (a parameter to be estimated).

We want to calibrate the model parameters (p, k, g, A, v) to historical observations of yield curve
term structure. Since both x and o are constant (diagonal) matrices, the variance/covariance terms defined

in (229) further simplify to
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. : 1 —_ e_Ki(T_t)

E,r = Diag(Eyr|, Eier = e_Ki(T_t); B, = Diag|Bj,; 7|, Bitr = —
nxn H nxn E L

t
[(pstTT = Pi;j0;0; J. i;u,T quu = pijo'io'j)/(Ki + Kj)

t

y(x;) — )/(K- + K-)
[XstTT —PUULU]f luTB]quu_pl] i0j l l :
Kj (432)

t t—s—y@) —v(x) +v(x; +x)

[lpstTT _pljo-lo-].f LuT u,Tdu:pijO-iO-j l o l
iK;

e—K(T—t) _ e—x(T—s)

t
where  y(k) =f e T-Wgy =
s K

Suppose the time series of zero rate term structure are recorded at n tenors 7, fork = 1,2,:--,n

and the factors are indexed by p = 1,2, -+, m, the (431) can be discretized by following the notation in

(420), that is

Measurement: y, = a; + Hy x; + 1, Tt ~N(0, Rt)
nx1i nx1 nxm mx1 nx1i nxn
State transition: x, = ¢ + Fr x, + q¢, qs ~ N (0, Q¢ )
mx1 mx1 mXm mxXm mxm mXxXm
Vil = Zemp lache =—| 1o |  [hsced
Velk = Lty Aeli = e gp o, 2 Vst e+t t+‘rk L 2 Ysett ij (433)
B H
it t+T i Tk
[Helkp = £, R, = Diag [dmﬂ‘
Xt = Wy, ¢t = Byt04, Fe=Ey Qt = Pu e

Assuming the initial state E, g = 0 and V, s = 0, the parameters (p,k, 0,4, v) can be estimated by

Kalman filter introduced in section 8.6.2.

8.6.4. One-Factor Hull-White Model

Again we assume constant x, ¢ and A. In 1D, the short rate process in (430) simplifies to
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Ofse _
= fs,t + Xster T O dry = (? t Qseet — KXsttt — K‘Ut) dt + odW,

t (434)
W = f E, odW,, dw, = —kw.dt + cdW,
S

Defining the maturity period T = T — t, the measurement and state transition system in (431) become

Zy,=— +
2 Ny 2

1 P Ysttvrter — sttt B+t i
log— —— “= )+ ——w €, € ~N(O,v2df*
T , ,

(435)
w; = By oA+ Ey,p, + &y, Evt ~ N(O» ‘Pv,t,t,t)

We want to calibrate the model parameters (k, g, A, v) to historical observations of yield curve

term structure. Since both k and o are constant, we can simplify the variance/covariance in (432) to

1— e—K(T—t)
Egp=e ™00, B.,= K

t
DseTT = 02] Elzt,Tdu = UZV(ZK)
S

, V(K) —y(2K)
K

t
Xs,t,T,T = o? ] EyrByrdu=o0 (436)
S

,t—s—2y(x) +y(2K)
12

¢
_ 2 2 _
Ystrr =0 j Bu,Tdu =0
S

e—K(T—t) _ e—K(T—S)

t
where y(x) =j e T-Wgy =
s K

Suppose the time series of zero rate term structure are recorded at n tenors 7, fork = 1,2,---,n,

following (433) we have

Measurement: y, = a; + Hy x; + 11, Ty ~N<O, Rt>
nx1i nx1 nx1 1x1 nx1 nxn
State transition: x; = ¢; + F; x, + q¢, q: ~N(0,Q;) (437)

1 Py Ysetrrptrn, — Pstit Bie+
Velk = Zt.Tk’ l[acl = — <log ~— + ek ) [Hel = ——
Ty PS,t+Tk 2 Tk
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} Tk _ _ _ _
R; = Diag|gzy2|, Xe = Wy, ¢ = By 04, Fe =Ey;, Qt = Oyttt

Assuming the initial state E, s = 0 and V, s = 0, the parameters (x,0,4,v) can be estimated by
Kalman filter introduced in section 8.6.2.
8.7.  Eurodollar Futures Rate Convexity Adjustment

8.7.1. General Formulas

We want to derive an analytical formula to estimate EDF Convexity adjustment in affine term
structure models. For simplicity, let us temporarily omit the t variable in the subscripts and denote the

bond price, for example, P, ; by P,. The forward rate dynamics can then be derived by following (43)

d 1dp” L(dPer , p dl AP, d—
Jery = Py T\ Py tv o Py ‘TP tV
P T (Ttdt - Bt TO'tth + Bt VO't dt - Ttdt + Bt Vo-tth Bt'TBt’VO-tzdt) (438)
tV
P, r(B;y — B
= t'T( LY tT) (Btva dt + atth)
TPy
Since
b 1, 439
Py =7 ferv (439)

we may also write

d (% + ft,T,V) = (% + ft,T,V) (Bey — Ber)(BEyofdt + o, dW,) (440)
Because f; r is given by a market tradable asset (P, — P, ;) denominated in a numeraire P, ;, and then
divided by a constant 7, according to (24) the f,, is a martingale under V -forward measure Q"
associated with numeraire P, ;. Since the volatility term remains the same after the change of numeraire,

we can remove the drift term and write the forward rate dynamics under Q" as
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Por(Bey — Ber)
TPy

dftry = o dW) or d (l+ftTV) = <l+ftTV> (BtV - BtT)UtthV (441)
T, - T, 7 T, : :

where dWY = dW, + B, ,o.dt is a Brownian motion under Q". This is consistent with the result implied
from (23).
Let us denote the futures rate as #, 7. The futures-forward spread (i.e., the convexity adjustment)

As = fery — ferv Can be regarded as the accumulated difference in drift for the forward rate dynamics
under two different probability measures, Q and Q" respectively

A = Et[fT,T,V] - E]t/ [fT,T,V] (442)
Since f; 7y is a martingale under Q, the spread comes solely from the accumulated drift of f, -, under
risk neutral measure Q, that is

A = Et[f T,T,V] — ferv (443)

To calculate the quantity, we first integrate (440) fromt to T

1

=+ frrv T T .

jrl— = exp (f Bu,V(Bu,V — Bu,T)alfdu + f (Bu,V — Bu,T)audW

?+ft,T,V t t (444)

1 (T 2
_ Ef (Bwy — Bur) ajdu)
t

then

- 1 T 1

IEt[fT,T,V] = (; + ft,T,V) €xp <] Bu,V(Bu,V - Bu,T)Oﬁdu> - ; (445)

t
Therefore
1 T
A, = (; + ft”) <exp ( f Byy(Buy — Bu,T)agdu> — 1) (446)
t

This is formula for the convexity adjustment from EDF rate to FRA rate [47] [48] [49]. To simplify the

above formula, we apply a few approximations. Firstly since 7 is generally shortand f; , is much smaller
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than 1, we can assume (1 + tf, 1) ~ 1. Secondly if x is small, we may write (e* — 1) ~ x. Thus we

have
1 T
s~ f Byuy(Byy — Byr)oidu (447)
t
If we consider a continuously compounded forward rate ¢, ; , then
logP; + — logP
Ciry = 0gly,r — 108ty (448)

T

and its dynamics can be derived as

1 1/dP,; dP,7dP,y dP.y dP,ydP,y
Al ry =—(dlog Py — dlogP,y) = - —tL - LIl 2otV eVt
Sty T ( 08 ft,r 08 t,V) T < Py > PtZT Py > Ptzv
- ; T‘tdt - Bt,TO-tth - EBt,To-t dt - Ttdt + Bt,VUtth + EBt,Vo—t dt
B2, — B? Biy — B ~
- —t,V LT O-tzdt + —t'V LT O-tth
2t T

Since the ¢, r, does not involve a zero coupon bond as numeraire, in theory it’s not a martingale under
V-forward measure. However, this property can still be reasonably assumed because firstly it is a quite
accurate approximation and secondly the convexity is dominated by the drift of the forward rate under

risk neutral measure. Therefore, we have the forward rate

Cery = EY [(T,T,V] (450)
Furthermore, we integrate (449) to have

T p2 2
B V_B T

(T,T,V=ft,T,V+] = 57 = O-‘l%du-i-J

t t

TR ., —B _
v ur - YT 6, dWW, (451)

Then its expectation under risk neutral measure (i.e., the futures rate) becomes

T p2 2
BU,V_B

Et[{T,T,V] =GCryv + j ual ogdu (452)

" 2T

Eventually we reach the convexity adjustment formula for a continuously compounded forward rate
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4. = Et[ZT,T,V] [Et [ZTTV] f (B LZL,T)szdu (453)

Knowing the functional form of B, r and o, in a specific model, the convexity adjustment for EDF
can be calculated by (447) or (453) accordingly.

8.7.2. Convexity Adjustment in the Hull-White Model

1—e —k(T-t)

With constant mean reversion rate x, we have B, r = . The convexity adjustment of EDF

in Hull-White model can then be estimated by (447) if the forward rate is simply compounded

1T o’ !
A = ;f Bu,V(Bu,V — Bu,T)O'Zdu = ?BT,Vf Bu,VEu,Tdu
¢ t

o2 T T o2 T ,
=—2RB E,rdu— | E,yE,+du]=—B B, —E E:-d
—— < ft urau _]; wVEur u> - T,V< t.T TV ft wT u>

2

o 1—EZ; a?
= EBT,V Bt,T - ET,V 2k = KT BT,VBt,T(2 - ET,V - Et,V)

(454)

2

o
= Z_TBT,VBt,T(BT,V + Bt,V)

or by (453) if the rate is continuously compounded [50] [51]

1 T
zzj (B.i —BZT)UZdu—_Bij (Buv+BuT)Equu
t

a2 T T
= ZBT’V <] Bu,VEu’Tdu + J Bu’TEu,Tdu>
t

t

T T
= BT VBtT(BTV + B; V) + BTV (f Eyrdu— f E&,Tdu>
t t

(455)

o’ o? 1—EZ;
= 4_TBT,VBt,T(BT,V + Bt,V) + Z_KTBT,V Bir ————

2 2

1 - Et,T
= BTVBtT(BTV + BtV) + BTVBtT (—)

2

o
= EBT,VBt,T(BT,V + By + Bt,T) =

Bryo?
41K

[Bry(1— e 2(T=0) 4 2k B2, |
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In a special case of k = 0, the Hull-White model reduces to Ho-Lee Model, which has the Q
dynamics of the spot rate
dr, = 0,dt + odW, (456)
Ho-Lee model is also an affine term structure model with

o?(T —t)3

T
— f (T - w)b,du (457)

Bl’,T = T —t and At,T = -

The convexity adjustment in Ho-Lee model can then be estimated as a special case of (454) if the forward

rate is simply compounded
1
Ag ~ Eaz(n —t)(2T, =T, — t) (458)
or by (455) if the rate is continuously compounded [49] [51]

A, ~ %az(Tl —t)(T, —t) (459)
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9. THREE-FACTOR MODELS FOR FX AND INFLATION

In this chapter, we are going to discuss a 3-factor model, which has been widely used in both FX
[52] and inflation market due to its simplicity and analytical tractability. In inflation market, this model is
also called Jarrow-Yildirim model [53].
9.1. FXand Inflation Analogy

Table 9.1 Inflation and FX Analog

Inflation Markets FX Markets Notation/Definition
nominal short rate domestic short rate T
nominal forward rate domestic forward rate fer
nominal bond value domestic bond value p
in currency units in domestic currency LT
real short rate foreign short rate! 7y
real instantaneous foreign instantaneous ~
forward rate forward rate Jer
real bond value foreign bond value -
o S . . . P r
in inflation index units in foreign currency ’
inflation instantaneous domestic minus foreign = ~
forward rate instantaneous forward rate? Jer = fer = fer
inflation short rate domestic minus foreign e =1, — T
short rate (rate spread) Lttt
Inflation index spot level spot FX. rate (dor_nestlc cc3y. Xt
per unit of foreign ccy.)
TIPS Price: nominal foreign bond value . P
value of a real bond in domestic currency truT
forward index level forward FX rate Ver = X¢ ?
t,T

The inflation market and FX market share a great similarity. For example, the domestic/foreign
economy and the exchange rate in FX world are in analogy to the nominal/real economy and the inflation
index rate, respectively, in inflation world. Table 9.1 shows the comparison between inflation and FX and

their counterparts. In the following of this chapter, we will develop the model primarily in FX world

1 A “hat” is used to denote a quantity in foreign currency/real economy.

2 A “bar” is used to denote a quantity in relation to rate spread (discussed later).

3 The exchange rate is expressed in a direct quotation format, e.g. a quote in fixed units of foreign currency against variable
amounts of the domestic currency.
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because it is less abstract and more straightforward to understand. However, the framework we build for
FX can be seamlessly migrated and adapted for the inflation markets.
9.2.  Three-factor Model: Modeling Short Rates

For short-dated FX option, we often assume deterministic domestic and foreign interest rates. The
importance of interest rate risk grows as the FX option maturities increase. For pricing long-dated FX
options, however this assumption is inadequate. We must develop a model that can sufficiently describe
the interest rates dynamics together with the FX rate.

9.2.1. Model Definition

Suppose in our 3-factor model, the domestic forward rate f, r, the foreign forward rate ft,T and the
foreign exchange (FX) spot rate x; (i.e., x; units of domestic currency per one unit of foreign currency)
are modeled by the following 3-factor SDE (the accent “hat” here denotes a quantity related to foreign

economy)

5 . 5, dx ,
dfpr = agrdt + BirdW,,  dfer = Burdt + BlrdW,,  — = pedt + 8dW, (460)

t

where dW; is a 3D standard Brownian motion (with independent components). The use of a multi-
dimensional and independent stochastic driver here simplifies the handling of correlation structure, which
is implied in the covariances (i.e., the dot product of two volatility vectors). For instance, the instantaneous
covariance between the domestic and foreign forward rate can be written as ﬁé,TBt,Tv a dot product between
two volatility vectors. This treatment avoids a whole set of explicit correlation parameters and makes the
formulas and equations concise. Occasionally with abuse of notation, we may write, for example, BZ; =
BirPBer to denote a variance term.

9.2.2. Domestic Risk Neutral Measure

The first step is to rewrite the model under domestic risk neutral measure. We define
t _ t
M, = exp (j rudu>, M; = exp (f f’udu> (461)
S S
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to be the domestic and foreign money market account in their own currency. The change from the physical
measure [P to the domestic risk neutral measure Q (associated with the numeraire M,) is achieved as in
(23) by a 3D vector of market price of risk A; such that

AW, = dW, + A.dt (462)
is a 3D Brownian motion under Q. The A, can be uniquely determined (see below) by considering three
market tradable assets: 1) the domestic bond P, , 2) the foreign money market account x, M, and 3) the
foreign bond x, P, 7. These three assets when denominated in M, are Q-martingales.

We begin with domestic and foreign bond dynamics under physical measure given in (216)

T T
dPt,T 1 ) ,
P (Tt — Qg t Ebt,T) dt — by rdW, arr = f aydu, byr = f Brudu

¢ T t ¢

(463)

dP.r (. . 1., ., ~ L - T,
5. (Tt —Qayr + Ebt,T> dt — byrdWy, arr = ] Arydu, ber = J Budu

¢ T t t

(Note that the 1 and p are omitted because the components of dWW, are independent and the covariance
can be denoted by a dot product.) To determine the ., we firstly consider the Q-martingale P, +M; *,

whose dynamics is

d(P.rM;t) _dPyy N dM;'  dP,;pdM;t

1
=|—a;r +=b? )dt—b' dw,
Pt,TMt_l Pt,T Mt_l Pt,T Mt_l ( t,T ) t,T t,T t

(464)
1 ~
= (bé,TAt - at,T + Ebt?’T) dt - bI,f,Tth

Following our previous derivation in (219), the drift term must vanish, we see that the first equation that
A must satisfy is
! 1 2 ! !
btrde = arr — Ebt,T or BirAt = aer — Berber (465)
Secondly, we consider the dynamics of the Q-martingale x, M, M;*

d(xMM;*)  dx, N am, dm;*
x MMt x, M, Mt
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= (up + 7, — 1, — 6iA,)dt + 8.dW,
Since the dirft term must vanish under Q, we have the second equation that A, must hold for

Side = pe +F— 1y (467)
Lastly, we consider the dynamics of the Q-martingale xtﬁt,TMt‘ 1 which can be written as

d(x;PrMi*) dx, dP.; N dM;t  dx,dP,;

xc P rM;? Xt B Mt x; Pyr
o 1., i~ ~
= (ﬂt + Tt - at’T + Ebt’T - T‘t - 6tbt,T) dt + (6t - bt,T) th
(468)
’ ~ 1 A2 IA ~ ! ~ ! ~
= <6tlt - at,T + Ebt’T - 6tbt,T - (6t - bt,T) At) dt + (61' - bt,T) th
R 1. “ -, N~
= (—aw + EbgT —8ibyr + bt,TAt) dt + (8, — byr) AW,
Since the drift term must be zero under Q, we have the third equation that must hold for A,
N A 1 72 N Al A~ Al N
berAe = Apr — Ebt,T + &by or  PBird =@ — ﬁt,T(bt,T - 5t) (469)

Given all the three equations we have derived, the A; can be uniquely determined, therefore the Q
is unique and the market is complete. We summarize our results as follows

th = th + Atdt and

(470)
Bt,,T/lt = QT — ,Bé,Tbt,T; OiAe = Fr — 1 + pe, ﬁé,T/lt =Qer — ﬁt',T(bt,T - 5t)
Hence, we can write the model in (460) under Q as
dfer = Birberdt + BirdWe, dfer = BéT (Bt,T - 5t)dt + Eé,Tth
dx, A B (471)
t

9.2.3. Change of Measure: from Foreign to Domestic

In analogy to domestic forward rate in (471), we can also write the foreign forward rate under

foreign risk neutral measure Q as
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dfer = Birberdt + Bé,TdVT/t (472)
where dl/zl/t is a 3D standard Brownian motion under Q. Comparing this equation with the foreign forward
rate equation in (471), we can easily conclude that the change of measure from @ to Q can be done by

dW, = dW, — 8,dt (473)

To make it more explanatory, we provide another way to view the change of measure. Given the

two money market accounts M, and M,, if C, is the value of a financial product in foreign currency, the

no-arbitrage formula (24) tells

D CT- N ~ [xTéTl
x M. E; | =—| =x.C; = C; = M.E; | ——
ttie =t lMT_ tv-t t t™t MT
- ) o /My -1 (474)

= xtCT Ml’"’ xTCT P xtCT dQ d@ MT xT
:EtA—:T]Et =Lt |—=——5< = — == F
i | T, My M, dQ|  dQ M, \ M
Xt

In analogy to (25), the (474) shows that the change of measure from Q to @ corresponds to the change of
numeraire from M, to M, /x,, while reverting from Q to Q@ corresponds to the change of numeraire from
M, to x,M,. Since dM, has nil volatility and the volatility of d(M,/x,) is —&,, based on (30) we reach
the same result as in (473).

More explicitly, given that x, M, is a tradable asset denominated in domestic currency, we can see
that x, M, /M, must be a martingale under domestic risk neutral measure. Since the dx, has a volatility of

5, and the dM, and d M, have nil volatilities, we can derive

d(x M M) dx, N dM, dM;'  dx,

— — = — + fdt — 1 dt = 5.dW,
x MMt x M, M'  x t L

(475)
dx;

— x_ = (Tt - f't)dt + Séth
t

Similarly, providing that M;/x, is a tradable asset denominated in foreign currency, the quantity

Myx;* /M, must be a martingale under foreign risk neutral measure, that is
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dMpx;*M7*  dM;  dx;'  dM?t
My My gt W
Tt t T t t

= rydt — (r, — f)dt — 85,dW, + 6.5,dt — #.dt
= —6{(dW, — 8,dt) = —6[dW,
= dW, = dW, — §,dt

where the dynamics of the exchange rate inverse is

dx;t dx, dx, dx
t e el

_1 —
Xt Xt Xt Xt

9.2.4. The Hull-White Model

If we assume the forward rate volatilities are in the form similar to (285)

T
Btr = Etroy, byt = Byroy, Eir = exp <—f Kudu> ) Byr = f
t t

T
Ber = Etr6y, ber = B r6y, Eer = exp <_f Kudu> ) Bir = j
t ¢

1 ~
t

(476)

(477)

(478)

where a; and &; are the short rate volatilities (in 3D), the domestic and foreign short rate r; and 7, are then

described by the Hull-White model. Based on (291) and the change of measure (473), the 3-factor model

follows the dynamics below under the domestic risk neutral measure Q

t t
T't = fS,t + f B{l,tbu'tdu + Zt' Zt = f ﬁ'l,l,,tqu ) dZt = —Kttht + O-éth
S N

t t
f‘t = f/:S,t + ] B\‘l’l,,t(b\u,t - 6u)du + ZAt, ZAt = j B\ICL,tqu ) dZAt = —IetZAtdt + 6-t’th (479)
S S

dx ~
—L = (r, — #)dt + 5,dW,
Xt

9.24.1. Zero Coupon Bonds

The domestic zero coupon bond must be under HIM framework and is given by (232)
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P. 1t
= Lexp (——f (B2, — B2,)oidu — BtTZt>
P ¢ 2 )

The foreign zero coupon bond can also be expressed under Q by (473)

_ P - t ~ -
Pr= PS exp( f (b2, — b2, )du — f (byr — bu,t)dwu>
S,t S

1., = L o L o
(— > f (b2 — bZ,)du + f 8y, (bur — by )du — f (byr — bu,t)qu> (481)
N S S

t t
2 (B2, - B2,)62du + Ber [ Buy6iSudu — By
> uT wt)oyau + by u,t Oy 04, dU t,TZt
S S

Given the bond prices above, their dynamics show as follows

~

dPt T ~ dPt T ~ ~ = ~ ~ ~ ~
— = T‘tdt - bt,',TthJ —_= T‘tdt - bé,Tth = (Tt + bt,‘,TSt)dt - bé,Tth (482)

tT t,T

9.24.2. FX Forward Rate
We know from (468) that x,P,-M; ! is a Q-martingale. If we change the numeraire from M, to
Py r, the forward FX rate y, r = xtﬁt,TPthl must be a martingale under domestic T-forward measure Q7,

that is

XePyr _ [T lePT,T

l = [E{[XT] = IE? [yT,T] (483)
Prr

Given the bond price dynamics (482), the dynamics of the forward FX rate (and its inverse) can be inferred

from (468) via the change of numeraire (22) from M, to P, r, that is

d 11
Wl _ 5 dW],  d— = — (82pdt — 5LpdW[) (484)
Yer Yer  YVer

where the FX forward volatility 6, 7 = 6, — Et,T + by and
dWT = dW, + b, rdt (485)
The (484) shows, in short term the FX forward volatility &, 7 is dominated by FX spot volatility &, so the

assumption of deterministic interest rates is acceptable. However, when the term gets longer, the
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significance of bond volatilities Bt’T and b, r grows, and therefore rates dynamics must be accounted for
long-dated FX derivatives.

The FX forward rate can then be derived by integrating (484) from s to t

Yt 1t 2 ‘
— = exp ——f 6quu+f 8, rdW,T
yS,T 2 S ’ S ’

1 t t t _
= exp (_E f 82 rdu + f 8y rbyrdu + f 61’”qu> (486)
S S S

t(8, —byr)’ — b2 t . o
= exp (— f (8 “';) wT du + f (84 = byr + byr) qu>
S S

Consequently, we have the FX spot x, = y; .

1 t ~ 2 t ~ ’ ¢
Xt = Vst €XP _Ef (6u - bu,t + bu,t) du + f (6u - bu,t + bu,t) Wy
s s

8, — b2
—st—eXp( ]( ”) ”tdu+f(6 — by + byy) dW>
s,t

9.2.4.3. FX Forward Rate Ratio

(487)

Let us define a ratio between two FX forward rates (or between two forward inflation index levels)

maturing at T and V respectively as

p. P
Ropy =2 = T o<y (488)
Yer  PerPey

= 6£,VthV + 51_-2‘Tdt - 5£‘TthV + 65‘7' (bt,V - bt,T)dt - 6£,T6t,th (489)
= 6£,T(bt,V —byr — 6y + 5t,T)dt + (5t,V - 5t,T) awy

= 6£,T(Bt,V - Bt,T)dt + ((St,V - (St,T),thV
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= (8¢ + ber — ber) (bey — ber)dt + (bey — bey — byep + bep) dWY
where we have used the expression of &, 1 in (484) and the change of measure
Ser =8¢+ ber —ber,  dWT =adW} — (byy — byr)dt (490)
9.244. Zero Coupon Swap and Year-on-Year Swap
In the following, we will develop formulas to calculate prices of several (maybe hypothetical)
derivative products on FX rate or inflation index. Let us first consider two products whose payoff depends
on the FX forward rates upon maturity: zero coupon (ZC) swap and year-on-year (YoY) swap.
The ZC swap at time T swaps the fixed and floating leg as
X

T
—1
- (491)

Fixed Leg: (1+ K)T7t -1, Floating Leg:
The fixed leg is a simple cashflow that is easy to value. The floating leg of a ZC swap can be priced based
on (483) as

M; (xr

~ Xt y T ~
v = B[ (1)) = PerlF [ 1] = Rr (5F = 1) = Pur = Pur (492)

(In fact, the real zero bond P, ; in inflation market is not directly observable, however we can use the
relationship in (492) to construct a term structure of zero rate, given that the term structure of nominal
zero bond P, and the ZC swaps are readily available [54].)

The YoY swap, on the other hand, at each time T; swaps the fixed and floating leg as

x.
Fixed Leg: KTt;, Floating Leg: ( — - 1) T; (493)

Xi-1
where K is the fixed coupon rate and t; = T; — T;_, is the year fraction between the two dates. The i-th

period of floating leg of a YoY swap can be priced as

~ M,/ x; T X
yYor = ¢.F [—t (—l —1)] =1.P, -([E‘ [—‘ —1) 494
t,i Tl M; \x,_, Tile, | ot Xiq (494)

The expectation of the FX rate ratio can be expressed as an expectation of the ratio of two forward bonds

for (483), thatis (fors <t < T < V)
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Xy Xy Yrv PTV
E{ [—] = E{ |Er [—] = E{ ] Ef |[5— 4
¢ o] = B (B [ e (495)

or more conveniently as an expectation of the FX forward rate ratio R, 7,

T

y R

] B L’:: = E{[Rrry| = Rery exp(Cery), Cory = f 847 (byy — byr)du (496)
t

The last equality in (496) comes from the fact that the R, 1, follows a lognormal process defined in (489).
9.2.4.5. European Option
A European option on FX rate (or inflation index level) expiring at time T with a strike K can be

priced as
rx _ = [Me + T +
ViR = Be |7 (wxr — 0K)*| = PurE] |(wyrr — wk)"| = PrB(K, My, vy, ) (497)
T

where w = %1 flags a call or a put. Since y, r is a martingale under domestic T-forward measure, the

price be calculated by Black formula (81) with mean m, =y, r and total variance

v, = f t&deu = f t(5u +byr — bur) du
’ ’ (498)
= ] t(&g + BZr02 + B2:62 + 2By 16,0, — 2B, 16,6, — 2B, 1By 10,6, )du
s
9.2.4.6. Forward Start Option
Cliquet option (or ratchet option) is a portfolio of forward start options that periodically settles and
resets its strike price at the level of the underlying during the time of settlement. Each forward start option
comprising the cliquet enters into force when the previous option expires. For example, a cliquet option

on the FX rate ratio (or inflation index level ratio) with a strike K canbe pricedas (fors <t =Ty < -+ <

n
~ [M, X; + v
Z t[Ml- <wxi_1 @ ) ] ZVt,l_l,l (499)
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where w = +1 flags a call or a put and V[, ; is the present value of the i-th forward start option. A

forward start option can be priced by (fors <t < T < V)

™M + .
Vizy = E M—;(w " wK) ] = PoyEY |(wRy.ry — 0K)"| = PoyB(K, mg, v, ) (500)

Since the R, 1 is a lognormal process under domestic V-forward measure Q" the above expectation can
be calculated by Black formula (81) with mean my and total variance vz. The mean has been given in

(496) while the total variance can be computed as

|4 T 14
vg = W [logRy ry] = f (8yy — Bur) du = f (8uy — ur) du + f 82, du (501)
t t T

In (501), we decomposes the integral into two pieces. The first integral comes from the randomness of the
forward rate ratio which has both numerator and denominator active until T, whereas the second comes
solely from the randomness of the numerator because the denominator has been fixed at T.

In the Hull-White model, the dynamics of forward FX rate ratio in (489) becomes

dR a ~ ~ '
A BryE.16{(8; + Beror — Ber6,)dt + (BryEyror — BryE,r6,) dWY (502)

Rt,T,V
If we further assume time-invariant k, £, o and & for rates and § for FX spot, the mean my in (496) and
total variance vy in (501) of the forward FX rate ratio can be derived analytically. The mean [55]can be

computed as

E}:/[RV,T,V] =Ryry eXp(Ct,T,V) == exp(Ct,T,V) and
PirPry
T’\ ~ ~
Cory = f BT,VEu,T61’t(8u + Byroy — Bu,T6u)du (503)
¢

B D 1. B, + kB, 7B, — B
= Bryd’ (Bt,T6 - EBtT& + LT tT2LT t,T O')

K+ K

where we have for constant k and &
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1— e—K(T—t) R 1 — e—ﬁ(T—t)

Bpr=—r—- B=— (504)
t,T ” 6T P

and the equation

T T 1—E,r By 1—e WOT-0D B .+ &B,1Byr — Ber
E, B, +du = E,r———du=——— = L - 505
,ft wl =T ,ft wh g K k(k +K) K+ R (505)
The total variance [56]can be computed as
V¢ [logRy rv] = J. (BryEuroy — BryEyr6,) du + f (64 — Byy6y + Byyoy,) du (506)
t T
We derive the first integral as
T = = 2
f (BT,VEu,TO'u - BT,VEu,Té-\u) du
t
2 2 T 2 N2 A2 T"Z D I a T i (507)
= Bryo E;rdu+ Bf,0 Eyrdu—2BryBryo'é | EyrE,rdu
t t t
= B’IZ",VBZK;t,TGZ + B’IZ",VBZTC;L“,T&\Z - ZBT,VET,VBHW,TU’&
and the second integral as
\%4
~ 2
f (6u — B, y6, + Buyau) du
T
V ~ ~ ~
= ] (62 + B2,62 + B2 0% — 2B,,y6,,6, + 2B,y 64,0, — 2B,y By y 0.6, )du
T
(508)
7 —2Bry + Byr. T — 2By + By, T—B T—B
. T,Iiz 28TV o2 n T,V2 26TV 2 _ o - TV si5 ) TV 515
K K % K
T Bry — Bry + Berary ' A
KK
where we define T = V — T and function
1— e—w(T—t)
Bosty = —————— (509)

w

9.3.  Three-factor Model: Modeling Rate Spread

151



We discuss here a variant of the previous 3-factor model. The only modification we have made is
that in this model the spread between the domestic and foreign forward rates f; ; = fir — ft,T is modeled
(an accent “bar” denotes a quantity related to rate spread), rather than the foreign forward rate ft,T itself.

9.3.1. Model Definition

In this model, the domestic forward rate f; 1, the forward rate spread f; » and the FX spot rate X,

are described by the following SDE under physical measure P

~ _ -, dx ,
dfpr = aurdt + BirdW,,  dfir = @ pdt + BirdW,, — L = . dt + 5ldW, (510)
t

where we will use, once again, market tradable assets to identify the market price of risk vector A, for
changing the probability measure by (462) from IP to the Q.

9.3.2. Domestic Risk Neutral Measure

We use the aforementioned three market tradable assets to identify the A,: 1) domestic bond P, 7,

2) foreign money market account x, M, and 3) the foreign bond x, 2, 1

T t
Pyr = exp (—j ft,udu>, x:M; = x, exp (J (r, — ft)du>
t S

T
xtpt,T = Xt €Xp (‘f (ft,u - ft,u)du>
t

(511)

where the spot spread 7, = r; — 7 is the difference between domestic and foreign short rate (or called
inflation short rate in inflation markets).
The first two assets are simple to handle. We can follow the same derivation for (465) and (467)
to obtain two equations that hold for A,
ﬁL{,T/lt = agr — ,Bé,Tbt,T and 6ide = U — Ty (512)

where as usual we define

T

T T T
et = f adu, byr = f Brudu, arr = f @ du, ber = f Bendu (513)
t t t t

The last asset x, P, ;- determines the third equation. At first, we derive the dynamics of P,

152



dp T _ _ 1 T 2 A !
B o= (rt Tt gy — Aoy T3 (ber —ber) ) dt + (byr — ber) AW, (514)
6T

The x,P, M is a Q-martingale, whose dynamics can be derived as

x¢ P M7 Xt P r Mt x¢ Pir

o 1, 2 -
=\Ue T+ 1t —Te+agr —agr t 2 (bt,T - bt,T) -1+ 6t(bt,T - bt,T) dt

+ (6t + Et,T - bt,T),th (515)

!

byr — b ; b '
LT ol 5t> (ber = ber) |dt + (8¢ + ber — ber) AW,

= 6{&1; + C_lt,T - at'T + ( )

!

Ber —b p b aw
LTty — /1t> (ber = ber) |dt + (8¢ + ber — ber) dW,

=\ a,r —agr +
t,T t,T < 2

where we have used the second identity in (512) and the (462) to reach the last equality. The drift term

must vanish, so we have

4

byr —b _
er b s /1t> (bey = ber) = 0 (516)

Aer — Aer t < >
By taking ;—T and plugging in the first identity in (512), we obtain

Aer — Aer + (ﬁ_t,T - .Bt,T),(Et,T —ber + 6, — At) =0

= Qg7 — Qe+ (Et,T - ﬁt,T),(Et,T —byr + 5t) - ﬁ_t,,T/lt + BirAe =0

(517)
= Birde = @pr + (Ber — Ber) (ber — ber +6¢) — Blrber
= Et,,T/lt =07+ (Et,T - ﬁt,T) (Et,T + 5t) - Eé,rbt,r
Now we summarize as follows the three equations that determine the A;
Berde = apr — Birber
(518)

Bird, = dr + (Bor — Ber) (ber +68,) — Birber
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Side = e — T
After changing measure from P to Q by (462), the model in (510) becomes [57]

dfir = Birberdt + ﬁE,Tth

df_t,T = (EE,Tbt,T - (ﬁ_t,T - Bt,T)I(Et,T + St)) dt + Eé,Tth (519)

dx; _ ~
Xt

9.3.3. The Hull-White Model

Again, we assume the domestic spot rate r; and the spread #; follow the Hull-White model where

the volatilities of forward rates have the form

T T
Ber = Eeroy, ber = Beroy, Eir = exp <_f Kudu> ) Bir = j Endu
t ¢

(520)
T

T
Btr = Etroy, byt = By r0y, Ecr = exp <—f ’Eudu> ) Byr = f Eiydu
t t

The short rate r, can be derived from integrating the forward rate equation for f; r in (519) from

start time s to t, that is
t t _
for = for + | Blarburdu + | Blrdi, (521)
S S
Taking T = t yields
t t _ "
T't = fS,t + f B{l,tbu'tdu + Zt' Zt = f ﬁ'l’l.,tdWU’ dZt = —Kttht + O-éth (522)
S S

Similarly, we can write 13, the rate spread (or inflation short rate), by integrating the forward rate equation

for f,r in (519) from s to ¢t, that is

t t
fur = For + | (Burbur = Bur = Bur) (ur + 8.)) du + | Firdi, (529)

Taking T = t yields [58]
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t
o= Foe [ (Bucbue = (Bue = Buc) (Bue + 8,)) du+ 7
S

(524)
t
Z_f_' = f ﬁ_'l{l.,tqu’ dZ_t = —lth_tdt + 5,_5th
S
Based on the above results, we can write the model in terms of short rate
t
e = fs,t + f ﬁ&,tbu,tdu + Z;
S
dZt = _Kttht + O-t{th
— t — — ! ,—
Tt = fsr + f (,B{L,tbu,t - (ﬁu,t - Bu,t) (bu,t + 5u)) du + z; (525)
S
dZ_t = —IZtZ_tdt + 5tlth
dx; _ ~
Xt
9.3.3.1. Zero Coupon Bonds
The domestic zero-coupon bond is given in (292)
Pyr 1t t _
P = pmexp (=5 [ (b= bie)du = [ (bur = bur)d,
Ps,t 2 S S
(526)

Py 1 [t
= PS exp <— Ej (BIZL,T - Bit)oﬁdu - Bt,TZt>
s,t N

The foreign zero-coupon bond can be derived using (521) and (523)

T T
Por=exp| = | (foo = fow)dv ) =Porexp| | foodv
t t

= Porexp ( | ' (f + (Blbus = B — Buw) (s + 6.)) du + I tﬁa,vqu) dv) (527)

p t T _ o trT_ ~

= t,TS_tTeXp wvPluv = \Puv = Puy uwv u vau uyav u

Pir 5 Bivbuy — (Buw — Buv) (buy + 8,)) dv du + B, dv dW,
s vt s Jt

s,t,T
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PS,t,T ‘ r r l_)lzl,T - E‘ﬁ,t ’ N 'R
— P exp (| { Blrbur = Bucbue = =15+ 83(bur = bue = Bug + Bue) | du
S

t
+J. (Eu,T - Eu,t) qu)
s

p T . = _, B
= Pt,T > €xp (f <(Bu,TBu,T - Bu,tBu,t)Uuau -
s

+ 61’1(Bt,TEu,to-u - Et,TEu,tau)> du + Et,TZ_t>

9.3.3.2. FX Forward Rate

XtPeT
PtT

Since the FX forward rate y, = is a martingale under Q7 as shown in (483), its dynamics

can be assumed to be in the same form of (484) but with a different specification of §; . Given the result
in (515), the 6,7 can be easily obtained through the change of numeraire technique (22), where the ex-
numeraire M, has nil volatility and the new numeraire P, r has a volatility of —b, r. Therefore, we have

the FX forward rate dynamics

d 1 1
YT — S1pdW],  d— =—
Ve Yer Yt

(827dt — 8. raW ) (528)

Wlth FX forward VOIatlIlty (St,T = 513 + Et,T and thT = th + bt’Tdt.

The forward FX rate can then be derived by integrating (484) from s to t

yer 1 ‘ 2 ‘ ! T
— = exp ——f 6quu+f 6, rdW,
Ysr 2 s ' s ,

1 t t t _
= exp <_§ f 82 rdu + f 8y, by rdu + f 61’lleWu> (529)
N S

N

1 t . ! —_ t —_ ! —~
= exp (— > f (8u + byr) (84 + byr — 2byr)du + f (8, + byr) qu>
S S

Consequently, we have the FX spot x, = y;,
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1 t — 2 T — ’
X¢ = Vg1 €Xp (—5 f (8u + byy) du+ f (64 + byy) WJ)
S S
(530)
P, 1t _ _ T -\
2y exp = f (6 + Buz) (8w + Bz — 2by e )du + f (8. + Bue) dV,
PS,t 2 s N
9.3.3.3. FX Forward Rate Ratio
The dynamics of FX forward rate ratio defined in (488) can be derived from (489) with FX forward
volatility 8,7 = &; + b. 1

dR
Sl = 81y dWY + 8Epdt — 81 dW] — 8. 18,y dt

= 5t,,VthV + (Stz,Tdt - 6£'TthV + 6;,7" (bt,V - bt’T)dt - St,,T(St,th (531)
= 6t,,T(bt,V — by — ey + Br)dt + (5t,V — 8pr) AWy
= (8¢ + ber) (bey — ber — bey + byr)dt + (bey — byr) dWY
9.3.34. Zero Coupon Swap and Year-on-Year Swap
Following our previous discussion, the floating leg of a ZC swap can be priced using the same

formula in (492). The i-th period of floating leg of a YoY swap can also be priced using (494) with the

expectation of FX rate ratio calculated as

T
Xy , B ~
EY [x—] =Rery exp(Ct,T,V), Cory = f Su,T(bu,V —byr —byy + bu,T)du (532)
T t

9.3.3.5. European Option

A European option on FX rate (or inflation index level) can be priced by (497) with mean m, =

¥ and total variance

t t
v, = f 82 pdu = f (8, + Bur6,) du (533)
S S

9.3.3.6. Forward Start Option
The forward start option, as aforementioned, can be priced by (500) with mean my given in (532)

and total variance vz computed as
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T 174 T 74
Vg = f (8uy — Sur) du + f 82, du = f (Buy — byr) du + f (8, + Buy) du (534)
t T t T
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10.  CVA AND JOINT SIMULATION OF RATES, FX AND EQUITY

In this chapter, we will extend our previous 3-factor model and construct a hybrid model for joint
simulation of interest rates, FX rates and equities across different economies. One of the applications of
the model is to evaluate Counterparty Value Adjustment (CVA), the market value of counterparty credit
risk.

Simply put, for example, unilateral CVA is the risk-neutral expectation of the positive part of the

price distribution contingent on the counterparty default

Vder _ g f T(1 R )V”+6 d (535)
where V;* is the positive exposure of the portfolio, R, the recovery rate, 7 the random time of default of
the counterparty and &, the Dirac delta at t. To simplify the problem, we may need to assume constant

recovery rate and independence between portfolio value and counterparty default (i.e., there’s no wrong-

way/right-way risk). These assumptions reduce (535) into
T _Tv* T v
CVA.r = (1-— R)Mtf E, IMLI dP [t <u]=(1- R)] P, rET lPLl dP,[t < u] (536)
t u t u,T

where P, [t < u] is the cumulative default probability function implied from counterparty’s CDS spreads
at time t. Monte Carlo simulation is often employed to evaluate the present value of the positive exposure.
The simulation can be performed under either (domestic) risk neutral measure or T-forward measure.
Whether one measure is superior to the other depends on the complexity of the associated numeraire to be
evaluated. When the interest rate is modeled by an affine term structure model, the T-forward measure is
more advantageous in simulation based methods, because its associated numeraire P, r is analytically
tractable. Based on our previous derivation (473) and (485), the change of measure is straightforward and

can be done by the following formulas

AW, = dW] — bordt,  dW, = dW, — 8,dt = AW[ — (6, + b,r)dt (537)
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where W, and I/T/t are Brownian motions under domestic and foreign risk neutral measure respectively,
W{ the Brownian motion under domestic T-forward measure, &, and —b, ; are volatility of FX spot x;
and bond P, 1 respectively.
10.1. Modeling Risk Factors

Here we consider three types of risk factors to be modeled: interest rates, FX rates and equities, in
both domestic and foreign economy. These risk factors are simulated under a unified probability measure:
the domestic T-forward measure, providing its simplicity in evaluation of the associated numeraire.

10.1.1. Domestic Economy

Firstly, we model the interest rate and equity in domestic economy. The interest rate is modeled

by a one-factor Hull-White model, such that

t
Tt = Qs + 74, G5t = for + f ﬁllt,tbu,tdu
S

t t t
! A7 ! ! (538)
7e= | Bludy == [ Blburduct [ ploawy
N N N
dZt = _Kttht + O-l{th = —(KtZt + O-t{bt,T)dt + O-éthT
The z; conditional on the z, for s < v < t < T is normally distributed and given by
t _ t t
e = Bucto + | BucdWy =By = | Bucburdu+ [ pluawy (539)
v v v

The equity is modeled by a lognormal process with continuous dividend rate n, and deterministic

volatility &,
dqt _ I 3747 — ’ ’ T
_q = (1 —nPdt + §dW, = (Tt —Ne— Etbt,T)dt + &edWy
t
(540)
B & o , &f -
dlogq, =\ —n:— ) dt + e dWy = | 1y — e — &iber Y dt + §dWy

The logarithm of equity spot log q; conditional on log g,, is normally distributed and given by
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a _ (° $u .
log— = f <ru — Ny — 7) du + f &, aw,
qU v v

t
= —logP,, +.f

v

b2 _ EZ t .
<% - nu> du + f (& + by,) dW, (541)
v

t bZ _ %'2 , t ,
= - log Pv,t + f (% —Nu — (S;u + bu,t) bu,T) du + J (S;u + bu,t) quT
v

4

where the integral of domestic short rate is calculated as in (233)
t t bﬁ ; t _
f r,du=—logP,; + | —du+ f b,, :dW,, (542)
v ' v 2 v '

10.1.2. Foreign Economy

Secondly, we model the interest rate, FX rate and equity in foreign economy (denoted by accent
“~”). The foreign short rate is also modeled by a one-factor Hull-White model, which is in a great similarity

as in domestic economy. Following the same derivation, we have

t
Tt = Qs + 2, bst = fsr + f P, eby rdu
S

t R t ) ¢ )
ZAt = j ﬁ‘l{t,tqu = — ] ﬁ‘&,t(au + bu,T)dt + J ﬁ'lfl,tquT (543)
N s s

dz, = —Re2dt + 6{dW, = — (Re2, + 6{(8, + b)) dt + GAW]

The Z, conditional on the Z, for s < v < t < T is normally distributed and given by

B2, + j iAW, = E, 2, — j Bi (8, + byr)du + f Bl AW, (544)

The FX rate is modeled by a lognormal process with stochastic short rates and deterministic
volatility

d
xxt = (r, — #)dt + dW, = (r, — , — Slbyr)dt + SLdW[
t

(545)
2

A 5t 12 A7 A 12 61':2 ! T
d IOgXt = Tt - Tt - 7 dt + Stth = T't - T't - Stbt,T - 7 dt + Stth
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The logarithm of FX spot log x; conditional on log x,, is normally distributed and given by
X; t 62 Lt
log— = f r,— T ——|du+ | 6,dW,
v 2 v

P,; thZ, — b2, — 52 t ~ P Lo
= log—'+f ‘ du +f b&,tqu—f b{deu+J 8y, dW,
v v v v

2

8, — b ‘ 5N
J‘ £( ut) ut "+ f (8, + bur — by ) d, as in (487) (546)
v

- ~ 2
P t((5,—b — b2 ~ N7

= logL't - f (8w = bu) i (84 + by — byyt) byr |du
Pv,t v 2

t
+ f (611, + bu,t - Bu,t)’quT
v

Note that the FX forward rate x,,P,, /P, . becomes a martingale under the ¢t-forward measure, that is

6,+b t v
logx, — long P f ! wt ut) du + j (84 + byt — by) AW (547)
v

The foreign equity is modeled by a lognormal process with continuous dividend rate 7, and

deterministic volatility &,

dq\t _ A &y gr Er T
E = (fy — A )dt + ,’rtth (rt Ne = §¢6¢ — ftbt,T)dt + e dWy
(548)
1 £2 & oy ~ A Er Er 1. gr
dlogd, = (. — i = 5 €) de + &dW, = (e — il — &8 — Etber — 587 ) de + Edw]
and the logarithm of equity spot log g; conditional on log §,, is normally distributed and given by
~ R t BZ _£2 t . ~ ;=
log 2t = —log P, + ] <qu - ﬁu) du + J (&4 + byy) AW,
Qv v 2 v
(549)
~ t B-it - é& A 2 ~ ! t a ~ ! T
= —log Pv,t + j T —Nu — (Eu + bu,t) (Su + bu,T) du + f (S;u + bu,t) aw,
v v

10.1.3. Equity Dividends
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The equity process allows for a continuous dividend rate as an input. Deterministic discrete
dividend payments can be approximated using spiky dividend rates. Suppose for the foreign equity® we
have a set of discrete dividend payments ¢;, ¢,, -++, &, occurringattimes s <t <T; < T, < - <T, <T.
This stream of dividend payments can be modeled using a piecewise constant continuous dividend rate
with intervals [t,T; —A], [T, — A T,], [Ty, T, —Al, [T, —AT,], -, [T, —AT,], [T,,T] . The
continuous dividend rate takes constant value 7j; when t € [T; — A, T;] and zero otherwise. To calculate
the constant vaule 7;, we start from the well-known martingale property. Under domestic T-forward

measure, the equity g, that pays dividends continuously (for t < t < T) admits the following identity

A T A
Xele _ pr [quf exp(, n”du)] (550)

Py Prr
The present value of the change in the equity over the course of each individual dividend payment period
[T; — A, T;] with infinitesimal A (such that the Pr_,r and Py, differ only negligibly) must equal the
present value of the corresponding dividend, that is

xtéipti X1,—AQr,—a — X1,qrT, Xqe Tizh Xeqe Ti
- = [ [——— — | = exp(—f fi du>——exp< f fl du
Per ‘ I Pr.r l Per e Pyr po

v

(551)
XtQt (1_ —mA) 1_[(1 e ﬂkA)
This translates into a recursive formula
1 &P,
j. = ——log| 1 — — 552
" g( A= e-nkA>> o8

which can be used iteratively to determine the dividend rate 7j; from a sequence of discrete dividend dates

T; and amounts ¢;.

10.1.4. Equity Option

! Without loss of generality, we derive the formulas based on a foreign equity. These formulas however can be easily adapted
for a domestic equity with a constant FX rate x, = 1.
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Since the equity spot is lognormally distributed, the time t price of a European option maturing at

T on equity g, can be calculated by Black formula (81)
‘Z,ETQ = Pt,TEZ[(qu —wK)*] = ﬁt,T%(K, m, v, w) (553)

where w = +1 flags a call or a put, and the mean and variance of g, are given by

geexp (— J; udu)
pt,T

T
A~ STra A STrA 2 ~ 2
m = E{[g7] = , 2=V{[g]= f (& + buyr) du (554)
t

Note that under foreign T-forward measure, we have the following martingale

A g

5 - ™t
t,T

(555)

~

P‘L’,T

afexp(Lfﬁudu)]

10.2.  Monte Carlo Simulation

Monte Carlo simulation is performed under the domestic T-forward measure. The risk factors z,
log q;, log x;, Z; and log G;, given in (539) (541) (544) (546) and (549) respectively, follow a joint normal
distribution. Providing that the instantaneous volatilities are piece-wise constant functions, there exist
analytical formulas for the mean and the total variance (i.e., the integral of instantaneous covariance over
one time-step) of the joint normal. However, this involves intensive algebraic derivations and complicates
the implementation, especially when the number of risk factors is large. Alternatively, we seek an
analytical mean while the total covariance is integrated numerically.

Writing the risk factor SDE’s in a matrix form (driven by the same n-dimensional standard
Brownian motion), we have

dw; = (Hyw; + hy)dt + 2;dW, = (Hyw, + hy — X{byr)dt + ZidW[ (556)

where the following vectors and matrices are defined
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Zt
Zt
w, = |logx;|, H,
5x1 log g, 55
log g,

0
—G6{6;
ke 0 0 0 O ~ 52
0 —k 0 0 O bse — st T
1 -1 0 0 0f, hy = 2
1 0 0 0 0 5x1 bsp— 1N ——
0 1 00 0 2
Pse = e —&,0 =

Lt 2[01: 6, 6 & gt]

nx5s5

(557)

The state vector w, can be solved from direct numerical integration of the SDE. However, this becomes

infeasible for a large number of simulation paths. Alternatively, we use the fact that the w, is Markovian

and follows a joint normal distribution. Its mean M ¢,y = Ej[w,] and variance V(¢yy = V3 [w,] at time

t conditional on the state at time v for s < v < t are given by the following ODE’s

dM ¢ty = (HeM(tjp)y + he — Ztbyr)dt

dV(tlv) = W,C [(Ut+dt] - W?J [(Ut] = VzT;[wt + dwt] - VE [(‘)t]

= Wsz [(Ut] + V?J [dwt; (Ut] + V?J [(Ut: d(‘)t] + VE [dwt] - Vg[wt]

= (HeVierw) + Veeymg + 24, )t

Initial condition: M) = @y, V) =0

Based on our previous derivation, we have

t
!
Ev,tzv _f ﬁu,tbu,Tdu
v

t
Eaifv—-j'ﬁa¢(6u+-bwT)du
v

p t((8,—by,) — b2 o
og% _ f <( u=bue) ~ b, (8u + bue — buy) bu,T> du
v

2

v,t

Qv t bLZL,t - fﬁ 4
log + —Nu — (S;u + bu,t) bu,T du
P, . 2

lOg,\— + T — Ny — (é:u + Bu,t),(6u + bu,T) du

vt

~ tf n2 £2
Qv f bu,t &
v
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Since the bond price admits an affine term structure, for example, log P, ; = —A,,; — B, +2,,, We can write

the conditional mean in matrix form, such that

Mty = Lyrywy + ¢ where
_Ev,t 0 0 0 O
o E, 000
By B,, 1 0 0
Bv,t 0 0 1 0
0 B,, 0 0 1l

]v,t =
5X1

t
- f Bl iburdu
v

t
- f 3t (8y + by )du
v

S

u,t)z - b2

: YL (8 + by — Bu_t)'bu_T> du

2

g —Nu — (Eu + bu,t),bu,T> du

; - ﬁu - (éu + Bu,t),(su + bu,T) du

(560)

Both I, and ], are independent of state vector w,,. They can be pre-calculated and used repeatedly to

evolve one step of the state vector for simulation paths. The conditional variance is also independent of

the state vector w,, and can be obtained via numerical integration of the ODE

dVie) = (HtV(tw) + Viewym; + Zézt)dt; Vi) =0

(561)

! Note that because the bond price is a forward looking of interest rate dynamics, the bond price formula derived under risk
neutral measure is still applicable here, even though it depends on the z, that is evolved under domestic T-forward measure.
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11. LiBOR MARKET MODEL
11.1. Introduction

The challenge in modeling interest rates is the existence of a term structure of interest rates
embodied in the shape of the forward curve. Fixed income instruments typically depend on a segment of
the forward curve rather than a single point. Pricing such instruments requires thus a model describing a
stochastic time evolution of the entire forward curve.

There exist a large number of term structure models based on different choices of state variables
parameterizing the curve, number of dynamic factors, volatility smile characteristics, etc. The industry
standard for interest rates modeling that has emerged since 1997 is the Libor market model [59]. Unlike
the older approaches (short rate models), where the underlying state variable is an unobservable
instantaneous rate, LMM captures the dynamics of the entire curve of interest rates by using the market
observable Libor forwards as its state variables whose volatilities are naturally linked to traded contracts.
The time evolution of the forwards is given by a set of intuitive stochastic differential equations in a way
which guarantees no-arbitrage of the process. The model is intrinsically multi-factor, meaning that it
captures accurately various aspects of the curve dynamics: parallel shift, steepening, butterflies, etc.

On the downside, LMM is far less tractable than, for example, the Hull-White model. In addition,
it is in general not Markovian (unless the volatility function is assumed to be separable into time and
maturity dependent factors) as opposed to short rate models. As a consequence, all valuations based on
LMM have to be done by means of Monte Carlo (MC) simulations.

In this section we will discuss the classic LMM with a local volatility specification. The Libor
market model can be regarded as a collection of Black models connected by HIM no-arbitrage condition.
It is a discrete version of the HIM model with a lognormal assumption for forward rates.

11.2. Dynamics of the Libor Market Model

The (79) shows that each Libor forward rate L, ; is modeled as a continuous time stochastic process

driven by a Brownian motion dW; under the measure Q'. To make it more general, we assume the rate
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dynamics is driven by a d-dimensional independent Brownian motion associated with a d-dimensional
volatility process

dLy; = Lt,i“t’,ithi (562)
The point of switching from scalar-valued to vector-valued Brownian motion is to simplify the handling
of correlation structure, which can be implied in the covariance, i.e., the dot product of two volatility
vectors. Later we will show that the two formulations are actually equivalent. We know the numeraires
for the measure Q'~* and for the next measure Q¢, so we can explicitly calculate the likelihood process
by (25)

Pei-q

_ dQ'! _Poia Poy Prio1 Py

= — = = =
‘ dQt % PO,i—l Pt,i PO,i—l
0,i

(1 + TiLt,i) (563)

Then its differential form is

PO i PO i . P, . T;L 'O" :
_ ) _ ) 12 i (3 7 i L&t t,i
Az, = ——1;dLy; = ——71;L¢ 0, AWy = 2y ——71;Ly 0, ;AW = Zp —————

Pyi1 Pyiq Piq 1+ 1L

awy (564)
By examining the integral form of (564), it is easy to write the corresponding 6, process as in the

Girsanov’s Theorem

TiLti0¢

9, = ——L L
t 1+ 7Ly

(565)

According to (13), we therefore have the drift adjustment between the two Brownian motions under Q!

and Q' measure [60]

TiLti0¢

dW} = dW}™' +
t t 14 1Ly

dt (566)

We may seek another way to derive the drift adjustment. Let us first consider two zero coupon
bonds maturing at T;_, and T; respectively. Their price dynamics are given by

dPpj_q = Ppjqrdt + Py 168, dW, (567)
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dP,; = P.;rdt + P;8; ;dW,
We also have

Pioq=Pi(1+1iLley) (568)
Differentiating (568) gives

APy = dPy; + ;L ;dPy; + TP dLy ; + 1;d P jd Ly (569)
Since the change of numeraire does not involve the drift terms of the numeraires, we just collect the
volatility terms from (569)

Prio180i—1dW, = (14 TiLe i) P i8¢ 1AW, + TPy iy or ;AW (570)
The last term is from the fact that dL; ; = Lt,iat’,ithi = ()dt + Lt_iat’,idVT/t, since the change of measure
does not alter the volatility. Therefore, the volatility terms have the following relationship

(1 +73Le)Peibeio1 = (14 Tilyi)Pei8ei + TiPriLe 0

= (1+7:Le;) (6611 — 66i) = Tilei0y,

(571)
TiL¢ 0
= 6pj1—0pj = T——————
ti—1 t,i 1 +TiLt,i
or given that 6, = 0 then
)
Lile,j0t,)
8ei = — i h (572)
¢ = 1+ Tth'j
which is equivalent to the bond volatility in (223). Accorder to (30), we have
; i—1 . Tileiop;
AW} = dwi—" + ————dt (573)

1+ TiLt,i
which is identical to (566). Based on the above analysis, we can recursively write the rate dynamics under

T,-forward measure QF for any given k > 0
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’ K ’ Tth,jO-t,j L
Loy AW + Le oy ; ——=dt ifi >k and t < Ty

i 1 + Tth]
dLy; = { Lol dW ifi=k and t <T;_4 (574)
TiLs 0y ;
Ly;0l ,dWE — L, 0!, S gy ifi<kand t <T;_;
T T L 1+ Tthj
j=i+1 ’

If we consider a special case for T, _; < t < T, (that is, function 7, is the lowest tenor index such

that ¢ < Ty)), the rate dynamics under Q" is

i

T;L; :0¢ ;
dLy; = Lo} AW + L0}, JL g, Vi>nand t<T, (575)
! ! ! ’ ’ . - 1 + Tth'j
Jj=n

The rate dynamics in (575) evolves under a sequence of successive forward measures, jumping from QF
to Q*** when time t advances from current period [Tj_;,Ty) into next period [Ty, Tyes1). This is
equivalent to working under a so-called spot measure, for which the numeraire is the discretely
compounded money market account M; consisting of rolled up zeros (an analogue of the money market

account M, whose value inflates continuously at spot rate 7). This numeraire is defined recursively as

follows
My
To— - — Ty _)t:)Tn
M Ptf’l
MO = 1
i
Mi = Mi—l(l + TiLi—l,i) = l_[(]. + TkLk—l,k) , 1 <i<n (576)
k=1
Mt = PtrnMn ) t e [Tn_l, Tn)

Since the Lj_1;,j =1,---,n are all known at t, the randomness of M; for t € [Tn_l,Tn) is solely
determined by the zero price P.,,, which is also the numeraire of the successive forward measure Q". The

common source of the stochasticity of the numeraires suggests that the two associated measures are

actually equivalent. In fact, if we take the limit of M by varying the size of the time intervals t;, for
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example, if we extend the 7,, such that T,, = T, the spot measure becomes the T-forward measure. On the
other hand, if the time intervals t; approach to zero, the M, becomes a continuously compounded money
market account M,, and therefore the spot measure coincides with the usual risk-neutral measure. In the
latter case, the forward Libor rate L, ; degenerates into an instantaneous forward rate f, r (to ease notation
we denote T; by T) and its instantaneous volatility becomes f; 7o, 7. By writing W, to W,, we can rewrite

(575) as

’ a7 T ft,uo't,udu , ~ T
dft,T = ft,TO't,T aw; + ———|dt| = ft,TO't,T dw, + f ft,uo't,udu dt (577)
¢ 1+ feydu "

Let us define B, = fi roe 7, then

dfyr = Bir (th + ( | ﬁ;,udu) dt) = Bl ( | ﬁt,udu> dt + BlpdW, (578)

This is identical to the second formula in (223). In other words, the Libor market model can be regarded
as a collection of Black models connected by HIM no-arbitrage condition. It is a discrete version of the
HJM model with a lognormal assumption for forward rates.

For simplicity, we revert to the rate dynamics definition as in (79) where each rate is driven by a
single Brownian motion. The instantaneous correlation between infinitesimal changes in rates is given by
the correlation between the two Brownian motions

dWidw, = p;dt (579)
This is indeed consistent with the multi-dimensional rate dynamics definition where we assume the
stochastic driver is a d-dimensional independent Brownian motion, in which the instantaneous correlation
has been implied in the rate volatilities, that is

_ Cov(st'i,st'j) _ [ 0t j _ ;0 j
SRS [, oo, Nl (580)

Pij

In the case of 1D Brownian motion driver, the rate dynamics under Q¥ in (574) can be translated into
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‘

L, ;0. dWk + L, ;0,; Z LZeiPy%ti g ifi >k and < Ty
’ ’ ’ ’ . 1+ Tthj
j=k+1
dLy; =1 Ly o AW ifi=kand t <T;_, (581)
T'Lt,'p"o-t,' o
Ly oy dWE — Ly o, Z #dt ifi <k and t <T;_,

\ j=i+1
11.3. Theoretical Incompatibility between LMM and SMM

In theory, the LMM and the SMM are not consistent. That is, if forward Libor rates are lognormal
under Q° measures, as assumed by LMM, then forward swap rates cannot be lognormal at the same time
under Q*? measure, as assumed by SMM. This can be illustrated through the following procedure: firstly
assume the hypothesis of the LMM, i.e., the forward Libor rates L, ; are lognormal under Q° measures,
and then apply the change of measure to obtain their dynamics under the Q%? measure, then apply Ito
lemma to derive the dynamics of swap rate S,f"b under Q*? measure. The derived swap rate dynamics is
in fact not lognormal, which is inconsistent with the hypothesis of the SMM. In fact, the (599) (derived
later) shows that swap rate can be represented as a sum of weighted forward rates, i.e., S,f"b =
> a+1WeiLe ;. Since the weights w, ; vary much less than the rates, we can roughly treat them as constant.
Therefore the sum of lognormal random variables asymptotically resembles a normal distribution by
central limit theorem, and cannot still be lognormal.

However, from a practical point of view, this incompatibility seems to weaken. Indeed, Monte
Carlo simulation shows that most of times the distribution of St“'b is not far from being lognormal. In
normal market conditions, the two distributions are hardly distinguishable.
11.4. Instantaneous Correlation and Terminal Correlation

The instantaneous correlation in (580) is a quantity summarizing the degree of dependence
between instantaneous changes of different forward Libor rates. Because it is determined only by the

diffusion terms, it does not depend on the particular probability measure (or numeraire asset) that is
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associated. However the terminal correlation, which describes the dependence between the rates rather
than their infinitesimal changes, depends on the particular probability measure.

Suppose we have the rate dynamics under Q by (574)

dL;; = Lt,i#?kdt + Lt,io't’,ithk

( i
TiLs 0y ;
at"izlj_:—];'] ifi >k and t < T}
. Jer= S ) (582)
=10 ifi=kand t <T;_,
TiL; i0¢ i
—0y; SRR ifi<kand t <T;_4
CLa 1+ Tl
\ Jj=it+1 It

and thus the rate at a future time T can be integrated from time t to give

T

T . 1 T
Ly; = Ly exp <j u{;kdu — Ej 0,10y, du +f Uﬁ,iquk> (583)
t t t

Since there are rates L. ; in the drift term yi’k and they are random and path-dependent (o ; is
deterministic though), the u,f.’k must also be random and non-markovian. This complicates the calculation

of the rate expectation under different measures. However because the randomness of ué"‘ is negligible
compared to the diffusion term in the rate dynamics, we can approximate it by freezing its rates

dependenceto be at t fort < u

( i
TiL; 0y
JI’U-ZM ifi >k and u < Ty
. 1+ TjLOj
] Jj=k+1 ’
_izk =<0 ifi=k and u < Ti—l (584)
TiLe 0y i
—o,,; 1’;% ifi <k and u <Tj,
\ j=i+1 it

Under this approximation the rate is

T 1 (T T
Ly; = L exp (f ﬁ;’kdu — Ef 0,10y, dU +f GL’L,iquk> (585)
t

t t

then one can easily write its expectation

173



T
E¥[Lri] = Ly exp ( f ﬁ:;"du) (586)
t
and moreover

E¥[Lr L7 ;]
Ef[Lri|Ef L]

T _ik 1T T T_jk 1,.T T
[E’t( [Ltieff 7, du—zft 0y,,i0u,idu+ |, Uu'idWJ;Ltje . al du—ift au,jau_jdu+ft au,jdwlf]

Q

T ik T _jk
Ltieft Hy duLtjeft Hy du

1 (T 1 (7 . T L (587)
= exp _Ef O_u,io-u,idu_zj 0y, j0u,jdu | Eg [exp J (0w + 0u,;) AW
t t t

17, 1" 1T :
= exp (— Ef Oy iOyidU — Ef au,jau,jdu + Ef (au,i + au,j) (au,i + au,j)du>
t t t

T
= exp (f a{t,iau,jdu>
t

Hence from the definition of correlation, we can compute the terminal correlation g;; for the period from
ttoT
Ef[(Lr; — Ef[Lr])(Lr; — Ef[Lr,])]
\/]Elt{ [(Lr,i - ]E't‘[LT,iDZ] \/]E't‘ [(LTJ - [E'f[LT,j])Z]
_ Ef[LrLy ;] — E¥[Ly|Ef[Ly]

A N e

Qij =

(588)

exp (ftT J{L_iau,jdu) -1

\/exp (ftT U&,iUu,idu) -1 \/exp (ftT a{l’jau,jdu) -1

~

Considering the covariance integral ft 0,10y jdu is in general much smaller than 1, the above equation

can be further simplified to
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T ,
J; 04,0,,;du

0ij & (589)
T , T ,
th 0y, 10y 1du \/ft 0y, Oy jdU
or written in terms of the constant instantaneous correlation with scalar volatilities
T
pij [, 0ui0ujdu
(590)

Qij ~ T T
(I ot |17 o7
This formula (a.k.a Rebonato’s terminal correlation formula [61]) shows through Schwarz’s Inequality
that |o;;| < |pi;|, the terminal correlations are, in absolute value, always smaller than or equal to
instantaneous correlations.
11.5. Parametric Volatility and Correlation Structure

11.5.1. Parametric Instantaneous Volatility

In previous section we have introduced a procedure to bootstrap the caplet implied volatilities from
a term structure of cap implied volatility. The relationship between the caplet volatility o; and the

instantaneous volatility o, ; for the forward Libor rate covering period T;_,~T; is given by (82)

Ti—4

¢F(Tm1— 1) = j o2 du (591)
t

Roughly speaking, the caplet volatility is just an average of the instantaneous volatility over time. A
commonly used parametric form of instantaneous volatility is given as [62]
Orii= PPy,  t<Ti4
Ve =Ty —t;a,b,c,d) = (a+ b(T;_y — t))e~Ti-170 4+ 4 (592)
a+d>0, b,c,d >0
This linear exponential formulation can be seen to have a parametric core 1 that is locally altered for each
maturity T; by the ¢;. The parametric core y allows a humped shape occurring in the short end of the
volatility curve. The local modifications, if small (i.e., ¢; is close to 1), do not destroy the essential

dependence on the time to maturity. The formulation also implies the volatilities are close to (a + d) for
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short term maturities and close to d for the long term maturities. Notice that the extra ¢; terms make this
form over-parameterized for calibration to caplet volatilities. However, it adds a flexibility that can
improve the joint calibration of the model to both the caps and swaptions markets.

In this formulation, we can easily compute the accumulated variance/covariance by a closed form

formula with the help of the following indefinite integral [63]

1Y = flpt,jlpt,jdt = f ((a=b8)e® +d) ((a - bo))e +d) dt

d bd
= aT(ec&- + ec8j) + d?*t — C_Z(ecdi(c5i -1+ eC6f(c5j _ 1)) (593)
eC(6i+5j)
t—a (Zazc2 + 2abc(1 — ¢6; — ¢&;) + b?(1 — c6; — ¢6; + 2026i6j))

where §; = t — T;_;. Then the accumulated covariance is

T s @ s @
f pijowi0ydu = piip;i (17 — 1,7 (594)
t

and the i-th caplet volatility is simply
T

GH(Tia =0 = | ofidu= g7 (1 ~ 11" (595
t

11.5.2. Parametric Instantaneous Correlation

The instantaneous correlation is assumed to be time homogeneous. Other than being symmetric
and semi-positive definite, the instantaneous correlation matrix associated with a LMM are expected to
have some additional qualities. The main properties are [64]

1. Correlations are typically positive, p;; >0, Vi,j.

2. When moving away from diagonal entry p;; = 1 along a row or a column, correlation should
monotonically decrease. Joint movements of faraway rates are less correlated than
movements of rates with close maturities.

3. Moving along the zero curve, the larger the tenor, the more correlated moves there will be in

adjacent forward rates.
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Schoenmakers and Coffey suggest a full rank 3-factor parametric form for the correlation structure
[65]
pPij = p(i,j; B1, B2, B3, m)

2+j2+ij—-3m—-10{+j)+2m?> —m—4
(m—-2)(m-23)

= exp (— izl <—10gﬁ1 + B,

m-—1
(596)

2+j2+ij—(m+3)({+j)+3m*+2
~Fs (m —2)(m — 3) )

0 < B3 < 3B, 0 < B, + B3 < —logp,
where m denotes the total number of forward Libor rates under consideration. The calibration experiments
of Schoenmakers and Coffey show that the above correlation structure suits very well in practice.
However, calibrating a 3-parameter matrix takes longer time than a 2-parameter one. Furthermore, the
experiments of implied calibration reveal that the calibrated S5 is practically always close to 0. Thus they

suggest to set 53 = 0 and adopt the following computationally improved correlation structure

pij = ,D(l,], Bl' ﬁz'm)

_ exp (_ H <_logﬁl 5 i2+j2+ij—3 ((17:_— 21))((; +_j;)+ 2m? —m — 4)) (597)
0< B, < —logh
11.6. Analytical Approximation of Swaption Volatilities
At time t, the Black swaption volatility (squared and multiplied by T,, — t) is given by
T, T,
P = (¢#0) (T, — ) = j (02°) du = j (d1ogS@?)’ du (598)

We can derive a formula to compute the volatility under a few approximations. Firstly, we write the swap

rate in (77) as a linear combination of forward rates

b

S = Z Wil (599)

i=a+1
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where the weights

i 1
. l_ ——
TiPt,i _ Ti H]=a+1 1+ Tth,j

b 1
Z — TP b k
k=a+1 ‘*kttk z:k a 1Tk||j a IT

We; =

(600)

In fact the existence of (599) implies the aforementioned incompatibility between LMM and SMM under
a single measure, because a sum of lognormal distributions cannot be lognormal. However, as noted

previously, this approximation is not bad at all. By differentiating both sides of (599), we have

dS{.l'b = ()dt + Z (wt,idl't,i + Lt,idwt,i) (601)
i=a+1
and then
dse?  (dse?)’ 1 <
t
dlogS{? = — - —5 = ()dt +— Z (weidLe; + Lejdwy;) (602)
St Z(St’ ) St i=a+1

The above equation can be squared to give

b 2
1
(d logSf“b)2 = 5 < Z (weidLe; + Lt,idwt.i)>

(S{“Lb) i=a+1

(603)

s Z (wtlwt]stlstJ + Ly L jdwejdwej + weile jdLidwy
(S ) i,j=a+1

+ wt,th,ist,jdwt,i)
Considering that the variability of the w, ; is much smaller than that of the L, ;, the above equation can be

simplified to

2 1
(d lOgS;l'b) =~ @b 2 Z wt,iwt'jst'l'st,j
(St’ ) i,j=a+1
(604)
1 b
z wt.iwt.th.iLt.J'Ut,iUt,detith]

= 2
(Sr?’b) ij=a+1
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b

1
= 2 We,iW,jLeiLe,jpijorio jdt
(St ) i,j=a+1

Hence the Black swaption volatility is given by

Ta
v —J. (dlogs$?) du~f
t

ab Z Wy, i Wy ]Lu LLu jpljo-u Lauj du (605)
(S ) i,j=a+1

The above quantity is path-dependent and can only be evaluated by Monte Carlo simulations. In order to
gain an analytical estimation, we make a further approximation by freezing all L, ; to their values at ¢ and

hence we reach the Rebonato formula [66]

b

1 Ta
—= z wt,iwt,th,iLt,jpijj Oy, Oy, jdU (606)
(St' ) ij=a+1 t

Hull and White have proposed another approximation formula which is slightly more sophisticated

ab _
'Ut ~

than the above one. Because w,; is defined as a function of forward rates L, ;, its total differential can be

expressed as a sum of partial differentials
doy; = —aL,; (607)

Then we can estimate

dS®P = ()dt + Z (weidLe; + Legdw,)

i=a+1

wtl
= ()dt + Z widLe; + z gyt dy
i=a+1 i,j=a+1
(608)
= ()dt + Z <th Z L“aL”>st]
j=a+1 i=a+1

b
= ()dt + Z @ Ly,

j=a+1
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in terms of a set of new weights

b
0wy ;
Wej = Wej + Z Ly, —8L:; (609)

i=a+1
The way to estimate the partial derivatives is as follows. We know that

aPt’i _ Pt,iTj
aLtJ 1 + Tth'j

15 (610)

where 13 is an indicator function that equals to 1 if i = j and O otherwise. Therefore, the partial

derivative

TP
St - p
0w Dg=qr1 TkPe
aLt,j aLt'j

b
_ TPy T TPy 0 Xk=a+1TkPek

=- L=y — 7
22=a+1 Tkpt,k 1+ TJ—Lt;J— (Z£=a+1 Tth,k) aLt’j

(611)

b
_ Peili 4 We; Tj Yk=j Tk Pek
T T Tvql,, TS o T Tyl
Jj=tj k=a+1 “k'tk JHtj

_ a)t,l-‘rj A{_l'b 1
1+ Tth'j A?'b {iz]}

Hence the Black swaption volatility is given by

Ta 1

b
z Wy Wy jLoy Loy jPij0Y 0y, j | AU (612)

Ta 5
7P = j (dlogSy?) du = j >
t t (Sg'b) ij=a+1

Again by freezing all L, ; to their values at t, we reach the Hull-White formula [67]

—a,b __
V¢

b
1 L Ta
~ 5 2 wt,iwt,th,iLt,jpijf Oy, Oy, jdU (613)
a,b
(St ) ij=a+1 t

In most situations the two approximations differ negligibly. They work equally well and both give

satisfactory estimation in general.

11.7. Calibration of LMM
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Calibrating the LMM means reducing the distance between the market quotes (e.g., for caps/floors
and swaptions) and the prices obtained in the model by working on the model parameters. Though the
zero curve is also a market input, it will be automatically fitted and implied in the price calculation. In the
LMM framework, the free parameters are those deriving from the instantaneous correlation and volatility

parameterizations. In our example, the instantaneous volatility is assumed to be defined by (592)

0ci = Pe; = ¢i([a + b(Ti_y — )]e~Ti-170 + q), t<Ti_,i=2,--,m

(614)
a+d>0, b,c,d >0, 09<¢; <11
and the instantaneous correlation is assumed to be given by (597)
pij = p(,Jj; B1, Baym)
li —Jjl P2+j2+ij—-3m—-10{+j)+2m?> —m—4
= —— -1 615
exp( m—1 Og181+ﬁ2 (m—Z)(m—S) ( )

0< B, < —logp,
where m is the total number of forward rates under consideration. To ease the notation, we define the
volatility parameter vectors with their constraints as a = (a, b,c,d)’ € C, and ¢ = (¢, -, Pp)" € Cg,
and the correlation parameter vector as § = (4, 82)" € Cg.
In the classical LMM, the volatility skews and smiles are not considered, hence the calibration
only applies to the ATM volatilities in our example. However, the model has evolved remarkably to relax
such limitation along with other issues in recent years [68] [69].

11.7.1. Instantaneous Correlation: Inputs or Qutputs

Per previous discussion, the swaption market quotes have implied correlation information.
However, should we infer the correlation structure endogenously from the swaption market quotes or
should we estimate exogenously and impose it into the model leaving the calibration only to volatility
parameters? The answer surely depends on the quality of the market data as well as the application of the
model. As Jackel and Rabonato pointed [63], European swaption prices turn out to be relatively insensitive

to instantaneous (rather than terminal) correlation details, which means the correlation parameters implied
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from swaption quotes may be unstable and erratic. It would be wise to impose a good exogenous
instantaneous correlation structure and subsequently play on volatilities to calibrate. This allows us not
only to incorporate the behavior of the real market rates in the model but also to unburden the optimization
procedure.

Instantaneous correlation matrix can be estimated using historical market data of rates. Brigo has
done some tests on the stability of the estimates, showing that the values remain rather constant even if
the sample size or the time window is changed [70]. The historically estimated matrix can then be fitted
or smoothed by a chosen parametric correlation function by minimizing some loss function of the
difference between the two matrices. Such a more regular correlation structure can lead, through
calibration, to more regular volatilities and to a more stable evolution of the volatility term structure.

For demonstration purpose, we will make the calibration more general by taking the correlation as
a model calibration output instead.

11.7.2. Joint Calibration to Caplets and Swaptions by Global Optimization

The model can be calibrated jointly to a term structure of ATM caplet volatility and a matrix of
ATM swaption volatilities. Generally traders translate swaption prices into implied Black’s swaption
volatilities and organize them in a table where the rows are indexed by the option maturity time and the
columns are indexed by the length of the underlying swap. The calibration is equivalent to the following

optimization process performed over a, ¢ and 8

. l 2 t
Argmin | wey, Z Pl omke _ cmal)? 4 Wowpe z swp (kat ¢! ]dl)
@B 2<i<h 15i<jsb (616)

subjectto a € C,, p €Cy, BECy

swpt

where w,,; and wy,,,; are the weights to the cap and swaption markets respectively, w, Pl and W,  are

the weights to each caplet and swaption and the summations are made over the set of considered caplets

and swaptions.
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The calibration procedure follows two steps. Firstly we calibrate the time-homogeneous part i, ;
of the volatility function along with the correlation function
Argmin | wep, Z Cpl(cmkt . dl)z + Wowpe 2 swpt(cmkt ¢! ]dl)
@B 25i<b 1<i<jsb (617)
subjectto a € Cy, =1, BECp
The above minimization implies a suitable fit for the time-homogenous volatility function, e.g., « = @,
given a set of weights. Unfortunately there is, in a general case, not enough degrees of freedom left for
perfect fit of all the considered caplets and swaptions. Another constrained optimization problem with the
vector ¢ as variables is therefore solved
Argmin | wey, z wePL(cmk _ clmdl)z + Wenpe z SWpt(cmkt . sz)
¢ 2<i<b 1<i<j<b (618)
subjectto a =&, ¢ € Cy, B € Cg
where the weights, if wanted, might be changed from the previous optimization. Preferably one chooses
quite general weights in the first optimization and then tries to fit valid caplets and swaptions as good as
possible with the help of the ¢.

11.7.3. Calibration to Co-terminal Swaptions

A Bermudan swaption contract denoted by “y-non-call-x gives the holder the right to enter into
a swap with a prescribed strike rate K atany time T; ,i = a,---,b — 1 where T, = x and T}, = y. The first
exercise opportunity in this case would be at T, or x years after inception. The swap that can be entered
into has always the same terminal maturity, namely T, or y years after inception, independent on when
exercise takes place. A Bermudan swaption that entitles the holder to enter into a swap that pays the fixed
rate is known as payer’s, otherwise as receiver’s. Since Bermudan swaptions are useful hedges for callable
bonds, they are actively traded and one of the most liquid fixed income derivatives with built-in early

exercise features.
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Bermudan swaptions are typically hedged with the corresponding co-terminal ATM European
swaptions. Co-terminal means that the swaptions though may have different option maturities, their
underlying swaps mature at the same time, e.g., T,,. For this reason, a calibration procedure has been
introduced [71], which calibrates the model exactly to the co-terminal swaptions, while achieving a
satisfactory fit to the upper triangular portion of the volatility matrix. The calibration is based on a

recursive algorithm, which will be described as follows.
The market volatility vf’b (squared and multiplied by T;, — t) of co-terminal swaption maturing at

T} can be approximated analytically based on (606) or (613)

b

b
k,b kb2
(vt St ) = z z Ft,iFt,j¢i¢j5tl,i; Vk=1,-,y—-1
i=k+1 j=k+1

(619)

Tk
— kb Lj _
where F,; = Wi L and 6t,k = pij Yy, iy jdu
t

We can transform (619) to a quadratic form for variable ¢, by rearranging the terms in the double
summation
b
k+1,k i,k
Flee10 % " Pra + 2Fjia z Frihi60" Pran
~——,

A i=k+2
B

(620)
b b
.. 2
+ 2 2 Ft,iFt,j¢i¢j6tl:£_(vf'bsf'b) =0

i=k+2 j=k+2

C

We first consider the co-terminal swaption maturing at T;,,_; for k = b — 1, the same maturity as

the Bermudan swaption. This is the last co-terminal swaption, and its underlying is a one-period swap,

S¢ ™. Given an initial guess of a and g, the 8, ; is determined, we can write (620) as

— _ 2
FeySin1df — (07178, ) =0 (621)
since w/,™” =1, we have S;""* = L, ), = F, ,, and therefore
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¢p = (622)

We move to next co-terminal swaption maturing at T},_, for k = b — 2. The (620) gives

b—1,p—1 b,b
th,b 10¢ b5 dh_ 1+ 2F p 1FpPpbiy_s ' Pp_1
A B

(623)
2
ROl = (st =
(o

Assuming that in previous step, the last co-terminal swaption has been calibrated exactly by setting ¢,, as
in (622), an exact calibration to this co-terminal swaption can be achieved by setting ¢,_, equal to the
higher positive solution to the quadratic equation.

By following the above steps, we can derive all ¢, for k = b, ---,2 recursively and analytically
through an exact calibration to a co-terminal swaption maturing at T,_; given thatall ¢; , i = b, , k +
1 have been previously identified.

Our next step is to fit the model to the upper triangular portion of the volatility matrix. We end up

with solving the following optimization problem
Argmin Z Swpt((;mkt Gi ]dl)
@p 1<i<j=b (624)
subjectto a € C,, B € Cp
It should be noted that this calibration has a potential issue. When the initial guess of « is not close
to the true value, the computed ¢ vector is unbounded and may be far away from 1 due to parameter
redundancy within a and ¢. To mitigate this issue, we may rescale the ¢ vector by its mean (or geometric
mean) in each iteration of the optimization. Experiments show that although the rescaling may lead to an
inexact calibration to co-terminal swaptions, the scaling factor will converge and eventually become quite
close to 1, and therefore introduce little impact.

11.8. Monte Carlo Simulation
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11.8.1. Pricing Vanilla Swaptions

In previous section, we have introduced two analytical approximation formulas for swaption
volatility estimation. We may also price the swaptions by means of the MC simulations in LMM. At first

we have the payoff function of a payer swaption upon maturity at T,

b b
T.
"R A and A= ) mPus ) gt (625)
i=a+1 iza+1 1 j=a+1 TjLaq,j

The present value of the swaption at t can be expressed in various forms under different probability
measures, for example

1. Under spot measure Q"

Va,b
A _thtl l P E [ = (626)
M, T 2 (T + Tilio)
2. Under T,-forward measure Q¢
Va,b
VP = Py B |[o—| = PeoEE[V"] (627)
) Pa,a ,
3. Under T,-forward measure Q” (a.k.a. terminal measure)
b
T;P,
A —Ptb[Ebl l PthEb[ S — z Lall = p, B2 [v2P] (628)
Where,
b b
+
V&P = (sgP = (s&" - K) Z T H (1+7iLg))

i= a+1 aLb i=a+1  j=i+1

can be thought of as a sum of cashflows inflated to T},.
These formulas are mutually equivalent and must produce the same price if we perform MC simulations
under respective measures accordingly. However, the formula under the spot measure implies that one

must simulate simultaneously the full term structure of the forward rates from T, .., up to T, mainly due

to the stochastic discount factor within the expectation. This is in fact unnecessary if we work in the other
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two cases, where we only need to simulate the rate dynamics for L;, i = a + 1,--+, b. This is why MC

simulation of LMM in most cases is in favor of T-forward measures.
Let us consider a MC simulation for a payer swaption PS,_f"b under the terminal measure QP. The

swaption price is determined by the rate dynamics of L;, i = a + 1,---, b under Q?, which is given by

(581)

dLy; = Le;0p;dWP — Ly ;0 L= Mgy, Yi=a+l-band t<T;  (629)

The above SDE is often discretized in logarithmic form to reduce the numerical instability,

b
TjL¢ jpijor,j
J7Ljr ;]At

2
Ot
— LA ~NALN;
TH i, = At + 0y, VAEN; (0, p) (630)

log Leyat; =logle; — o0y
j=i+1

where V; (0, p) is the i-th component of a multivariate normal random variable. Apparently, this is not a
Markovian process as the drift term is path-dependent. To simulate a realization, we evolve the forward
Liborrates L;, i = a + 1,---, b simultaneously from present time t = T, to the swaption maturity T,. The
realized forward rates at T, are then used to calculate the swap rate Sg'b and the inflation factors

?=i+1(1 + era,j), and eventually the payoff ch"b. This simulation is repeated m times. The swaption
price can then be calculated as an average of the m realized payoffs discounted by P; j,.

Notice that in the above formula, the rates and volatilities are actually time dependent, we cannot
assume them to be constant within a time step if the time step is large. There are many methods to mitigate
this issue. For example, we may use predictor-corrector method to minimize the error due to time
dependent drift term. The method estimates the drift term using rates L, ; in the first attempt, then use this
drift to evolve the rates to get L,,4.;. In the second attempt, the drift is estimated again based on the
evolved rates L, ; from the first attempt. The average of the two drift terms is then used to evolve the

rates L, ; for current time step.
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To minimize the error due to the time dependent volatility term, we may use the mid value
% (04, + 0¢4ac,) to replace the volatility o, ; in the simulation. If a more accurate approximation is desired,
one can use the following formula to run the simulation

i,j ii
1 Lt,fzt,At _ Zt,At
1 + TthJj 2

b
log Liyar; =logLy; — Z + ]\fi(o;zt,At)

j=it+1

(631)

- t+At
Lj
where, 2 = f Pij0y,i0y,j du
t

This can be combined with the predictor-corrector method to further improve the simulation accuracy.

11.8.2. Bermudan Swaption by Least Square Monte Carlo

t =T T, Ta+1 Tp— Ty Ty

Let us define a Bermudan swaption. Suppose at present time t = T,,, there is a Bermudan payer
swaption with a tenor structure {T,, ---, T}, }. The option-holder has the right to enter a swap by exercising
this swaption at any of the dates {T,, -+, T,,—1 }, given that the swaption has not been exercised previously.
Upon exercise, the holder immediately enters into a payer swap that matures at T),.

Since Bermudan swaption has embedded path-dependent feature, we must work out the rate
realizations backwards to identify the optimality of exercise at different times. Traditional numerical
methods, like the finite difference techniques or binomial trees, are generally unsuited to handle higher-
dimensional problems, like the pricing of a Bermudan swaption in LMM, because their computation time
grows too quickly as the dimension of the problem increases. Monte Carlo methods are very well suited
for higher dimensional problems and path dependency, but have serious problems with early exercise
features. Longstaff and Schwartz proposed a promising new algorithm, known as the Least Squares Monte
Carlo (LSM) algorithm, for pricing early exercise products by Monte Carlo simulation. The key idea
behind the algorithm is to approximate the conditional expected payoff from continuation with least
squares approximation down to a set of basic functions.

Here we summarize the Longstaff-Schwartz method in brief as follows
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1. The Monte Carlo simulation is performed to generate p paths of the forward rates L; ; for i =
a,~-,b—1andj =i+ 1,--,b under the terminal measure Q. The rates must evolve from
present time t = T, to the last exercise date T},_,. However, as the t elapses beyond T,, the
length of the underlying swap shrinks, hence the number of the forward rates to be simulated
decreases.

2. The rate paths are then processed backwards, starting from the final exercise date T,_,. For
i = b — 1, we calculate the payoff value V2 ~"” for each path using the rate L,_; ,. This
value can be regarded as the swaption value at T;,_, (inflated to T})) for one path. We define
C; the swaption value from continuation, then C,_; = vlf’_‘f"’ is the swaption value for
continuously holding it up to T}, _;.

3. The early exercise is then considered backwards for dates T;, i = b — 2,---,a. At time T},
we calculate the payoff Vi“’ for each path using the rates L; j, j = i + 1,---,b. This is the
swaption value if being exercised immediately. The option-holder optimally compares the
payoff Vii'b from immediate exercise with the conditional expected payoff E?[C;.,] from
continuation and set ¢; = Max{V"? , E?[C;,,]}. The process then moves to T;_, and repeats,
until completes at 7,,. Now we have C,, the Bermudan swaption value for one simulated
path. (The method to estimate E?[¢;, ;] will be discussed in more details shortly.)

4. We then have p values of C,, one for each path. The present value of the swaption att = T,
equals to the average of the C, discounted by P ;.

Longstaff and Schwartz suggest to use a simple linear regression to estimate the conditional

expected payoff from continuation E?[C;, ] at time T;. It can be estimated through a multivariate linear
function

EP[Ciy1] = & + Bix; (632)
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where x; is a set of F;-measurable basis functions of the relevant state variables. The parameters @; and
[3; are estimated using the cross-sectional information in the simulated paths by regressing the subsequent
value of continuation C;,, on the x; as in the linear model

Ciy1 = a;+ Bix; + € (633)
Usually only the paths with in-the-money Vii’b of immediate exercise are included in the regression. This
is intuitive because out-of-the-money paths give the holder no choice but to keep holding it. As basis

functions, we use simple polynomials of the forwardrates L; ;, j =i + 2,---, b, for example, L; ; and Lﬁj.

The inclusion of swap rate S;*” may not be critical, because S} *"? is just a function of the forward rates.
Higher degree polynomials can make the regression unstable and is not recommended if the polynomials
don’t possess some orthogonal characteristics (e.g., Legendre polynomials). The fitted value of this
regression is an efficient unbiased estimate of the conditional expectation function and allows us to

accurately estimate the optimal stopping rule for the option.
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