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This note is to introduce independent component analysis and FastICA method developed by 

Hyvarinen et al [1].  

1. INTRODUCTION 

Independent component analysis (ICA) is a powerful technique for separating an observed 

multivariate signal into statistically independent non-Gaussian components. For example, let’s have 𝑛 

independent (non-Gaussian) sound sources installed at different locations in a room. Assuming no time 

delay and echoes, a microphone placed somewhere in the room can pick up an audio signal that is a linear 

mixture of the sound sources due to different proximities to the sound sources from the microphone. By 

sampling the audio signals from 𝑛 microphones located differently, the independent sound sources can be 

retrieved using ICA on the sampled audio signals.  

ICA shares certain similarity with the well-known principle component analysis (PCA) method. 

But unlike the PCA that imposes strong assumption of Gaussian features and seek variance maximization 

and ensure uncorrelatedness only by the first and second moments of the signal, the ICA exploits 

inherently non-Gaussian features for independence and employs information from higher moments. For 

ICA to function effectively, the independent components of source signal must be non-gaussian. The non-

gaussianity is crucial, because a whitened multivariate Gaussian signal, in which the components are 

uncorrelated and of unit variance, has a completely symmetric multivariate density. The symmetricity 

provides no information on the directions of the columns of the mixing matrix and hence makes the matrix 

estimation impossible. Although the ICA model can still be applied to Gaussian signals, it can only be 

estimated up to an orthogonal transformation and the mixing matrix cannot be identified. 

2. INDEPENDENCE BY NON-GAUSSIANITY 

As mentioned, the key to estimating ICA model is non-gaussianity. From the central limit theorem, 

we know that the distribution of a sum of independent random variables tends toward a Gaussian 

distribution. In other words, a sum of two independent random variables usually has a distribution closer 

to Gaussian than any of the two original random variables. Hence identifying the independent source 
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signal 𝑠 from the observed mixture 𝑣 is equivalent to finding a transformation matrix 𝐵 such that the non-

gaussianity of 𝐵𝑣 is maximized. 

2.1. Differential Entropy 

To find a good measure of the objective, i.e. non-gaussianity, we must introduce a quantity, known 

as entropy, for a probability distribution. In information theory, entropy is a measure of randomness. For 

a discrete random variable 𝑋, it is defined by 

ℍ[𝑋] = −∑𝑃(𝑋 = 𝜉𝑖) log 𝑃(𝑋 = 𝜉𝑖)

𝑖

 (1) 

and for continuous random variables, in which case it is often called differential entropy, is defined by 

ℍ[𝑋] = −∫𝑝𝑋(𝜉) log 𝑝𝑋(𝜉) 𝑑𝜉
Ω

= −𝔼[log 𝑝𝑋(𝑋)] (2) 

Here we want to show one property of the differential entropy that is of special interest to us when we 

come to the ICA method. Suppose 𝑌 = 𝑓(𝑋) is an invertible transformation from random vector 𝑋 to 

random vector 𝑌, we want to find the connection between the entropy ℍ[𝑌] and ℍ[𝑋]. Firstly, the density 

of 𝑌 can be formulated as 

𝑝𝑌(𝑦) =
𝑝𝑋(𝑓

−1(𝑦))

|det 𝐽(𝑓−1(𝑦))|
 (3) 

where 𝐽(𝜉) is the Jacobian matrix of function 𝑓(𝑋) evaluated at 𝜉. Hence the entropy ℍ[𝑌] becomes 

ℍ[𝑌] = −𝔼[log 𝑝𝑌(𝑌)] = −𝔼 [log
𝑝𝑋(𝑓

−1(𝑌))

|det 𝐽(𝑓−1(𝑌))|
] = ℍ[𝑋] + 𝔼[log|det 𝐽(𝑋)|] (4) 

It shows the entropy is changed in the transformation by 𝔼[log|det 𝐽(𝑋)|] amount. In a special case where 

the transformation is linear, e.g. 𝑌 = 𝑀𝑋, we obtain 

ℍ[𝑌] = ℍ[𝑋] + log|det𝑀| (5) 

2.2. Maximum Entropy Probability Distribution 

Assume that 𝑋 is a continuous random variable with density 𝑝𝑋(𝜉) and the information available 

on the density 𝑝𝑋(𝜉) is of the form (e.g. if 𝐹𝑖(𝜉) = 𝜉, it gives the mean of 𝑋) 
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∫𝑝𝑋(𝜉)𝐹𝑖(𝜉)𝑑𝜉
Ω

= 𝔼[𝐹𝑖(𝑋)] = 𝑐𝑖  ∀  𝑖 = 1,⋯ , 𝑛 (6) 

we want to find a density 𝑝𝑋(𝜉) that maximizes the entropy subject to the constraints in (6). To do so, we 

may consider the following functional 

𝒥[𝑝𝑋(𝜉)] = −∫𝑝𝑋(𝜉) log 𝑝𝑋(𝜉) 𝑑𝜉
Ω

+ 𝑎0 (∫𝑝𝑋(𝜉)𝑑𝜉
Ω

− 1)

+∑𝑎𝑖 (∫𝑝𝑋(𝜉)𝐹𝑖(𝜉)𝑑𝜉
Ω

− 𝑐𝑖)

𝑛

𝑖=1

 

(7) 

where the 𝑎𝑖  ∀ 𝑖 = 0,⋯ , 𝑛 are the Lagrange multipliers. The zeroth constraint ensures the total probability 

sums to 1. The entropy attains a maximum when the density function satisfies Euler-Lagrange equation, 

i.e. the functional derivative must equal zero 

𝛿𝒥[𝑓(𝜉)]

𝛿𝑓(𝜉)
=
𝜕𝐿

𝜕𝑓
−
𝑑

𝑑𝜉

𝜕𝐿

𝜕𝑓̇
= 0    for    𝒥[𝑓(𝜉)] = ∫ 𝐿 (𝜉, 𝑓(𝜉), 𝑓̇(𝜉)) 𝑑𝑥

Ω

 (8) 

where 𝑓̇ stands for the first derivative of function 𝑓. Since the 𝑓̇ does not appear explicitly in integrands 

of 𝒥[𝑝𝑋(𝜉)], the second term in Euler-Lagrange equation vanishes for all function 𝑓 and thus 

𝛿𝒥[𝑝𝑋(𝜉)]

𝛿𝑝𝑋(𝜉)
= − log 𝑝𝑋(𝜉) − 1 + 𝑎0 +∑𝑎𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

= 0 (9) 

Hence the density 𝑝𝑋(𝜉) with maximum entropy under the constraints in (6) must be of the form 

𝑝𝑋(𝜉) = exp(−1 + 𝑎0 +∑𝑎𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

) = 𝐴 exp (∑𝑎𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

) (10) 

In the case that the constraints are limited to the mean 𝔼[𝑋] = 𝜇 and the variance 𝔼[(𝑋 − 𝜇)2] = 𝜎2, the 

(univarate) density of maximum entropy in (10) can be further derived into 

𝑝𝑋(𝜉) =
1

𝜎√2𝜋
exp(−

(𝜉 − 𝜇)2

2𝜎2
) (11) 

which is the well-known Gaussian density. 

2.3. Measure of Non-gaussianity: Negentropy 
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A fundamental result from previous discussion is that a Gaussian variable has the largest entropy 

among all random variables of equal mean and variance. This means that entropy could be used as a 

measure of non-gaussianity. To obtain such a measure that is zero for Gaussian and positive for all other 

random variables, one often uses a slightly modified version of the differential entropy, called negentropy 

Θ, which is defined as 

Θ[𝑋] = ℍ[𝒵] − ℍ[𝑋] (12) 

where 𝑋 is an arbitrary (multivariate) random variable and 𝒵 is a (multivariate) Gaussian of the same 

covariance matrix as 𝑋. It is evident that the negentropy is always non-negative and becomes zero if and 

only if 𝑋 is a Gaussian. An interesting property arises from (5) is that the negentropy (12) is invariant for 

an invertible linear transformation 𝑌 = 𝑀𝑋, that is 

Θ[𝑌] = Θ[𝑀𝑋] = ℍ[𝒵] + log|det𝑀| − ℍ[𝑋] − log|det𝑀| = Θ[𝑋] (13) 

Negentropy appears to be a good measure of the non-gaussianity. However, the use of negentropy 

turns out to be computationally challenging. This is because, practically it is quite difficult to accurately 

and efficiently estimate the density function, which is the key ingredient in computation of the integral in 

(2). Therefore, some approximations [2], though possibly rather coarse, have to be used. In the following, 

we will introduce two of such approximation methods. 

2.4. Approximation of Negentropy by Cumulants 

The first approximation is based on cumulants of random variables. The cumulants [3] of a random 

variable 𝑋, denoted by 𝜅𝑛[𝑋], are given by cumulant generating function 𝐶𝑋(𝑡), which is defined as 

logarithm of characteristic function 𝜑𝑋(𝑡) of 𝑋, that is 𝐶𝑋(𝑡) = log 𝜑𝑋(𝑡). The characteristic function 

𝜑𝑋(𝑡) is a Fourier transform of the density function and it can be used to generate raw moments 𝜈𝑛[𝑋] 

𝜑𝑋(𝑡) = 𝔼[exp(𝑖𝑡𝑋)] = 1 +∑𝜈𝑛
(𝑖𝑡)𝑛

𝑛!

∞

𝑛=1

        and        𝜈𝑛[𝑋] = 𝔼[𝑋
𝑛] = 𝑖−𝑛𝜑𝑋

(𝑛)(0) (14) 

where 𝜑𝑋
(𝑛)(0) denotes the 𝑛-th derivative of the characteristic function evaluated at 0. Since the cumulant 

generating function 𝐶𝑋(𝑡) is a composition of two functions, which have power series expansions itself, 
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it also has a power series expansion (in Maclaurin series, i.e. a Taylor series centered at zero). The 

cumulant 𝜅𝑛[𝑋] can be derived from the 𝐶𝑋(𝑡) by 

𝐶𝑋(𝑡) = log𝜑𝑋(𝑡) = ∑𝜅𝑛[𝑋]
(𝑖𝑡)𝑛

𝑛!

∞

𝑛=1

        and        𝜅𝑛[𝑋] = 𝑖
−𝑛𝐶𝑋

(𝑛)(0) (15) 

For example, when written in terms of the raw moments, the first 4 cumulants appear like 

𝜅1 = 𝜈1, 𝜅2 = 𝜈2 − 𝜈1
2, 𝜅3 = 𝜈3 − 3𝜈2𝜈1 + 2𝜈1

3 

𝜅4 = 𝜈4 − 3𝜈2
2 − 4𝜈3𝜈1 + 12𝜈2𝜈1

2 − 6𝜈1
4 

(16) 

The approximation imposes an assumption that the random variable 𝑋  is close to a standard 

Gaussian. Let 𝜙(𝜉) be the density of a (univariate) standard Gaussian 

𝜙(𝜉) =
1

√2𝜋
exp(−

𝜉2

2
) (17) 

Derivatives of the density 𝜙(𝜉) defines a series of functions ℎ𝑛(𝜉), known as Hermite polynomials 

𝜙(𝑛)(𝜉) = (−1)𝑛ℎ𝑛(𝜉)𝜙(𝜉) (18) 

For example, the first a few Hermite polynomials are as follows 

ℎ0(𝜉) = 1, ℎ1(𝜉) = 𝜉, ℎ2(𝜉) = 𝜉
2 − 1, ℎ3(𝜉) = 𝜉

3 − 3𝜉 

ℎ4(𝜉) = 𝜉
4 − 6𝜉2 + 3, ℎ5(𝜉) = 𝜉

5 − 10𝜉3 + 15𝜉, ⋯ 

(19) 

The Hermite polynomials form an orthogonal system, such that 

𝔼[ℎ𝑚(𝑍)ℎ𝑛(𝑍)] = ∫ 𝜙(𝜉)ℎ𝑚(𝜉)ℎ𝑛(𝜉)𝑑𝜉 = {
𝑛! if  𝑚 = 𝑛
0 if  𝑚 ≠ 𝑛ℝ

 (20) 

where 𝑍 is a standard Gaussian. Because the density 𝑃𝑋(𝜉) of random variable 𝑋 is close to 𝜙(𝜉), it can 

be approximated by Gram-Charlier expansion [4] truncated to include first two non-constant terms. The 

approximation of 𝑃𝑋(𝜉) is defined in terms of cumulants 𝜅𝑛[𝑋] of random variable 𝑋 as follows 

𝑝𝑋(𝜉) ≈ 𝑝̂𝑋(𝜉) = 𝜙(𝜉)(1 +
𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
+⋯) (21) 
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The next step is to estimate the entropy using the 𝑝̂𝑋(𝜉) in (21). Since 𝑃𝑋(𝜉) is close to 𝜙(𝜉), the 

cumulant 𝜅3[𝑋] and 𝜅4[𝑋] are small, we are able to apply the approximation log(1 + 𝜖) = 𝜖 − 𝜖2/2 +

𝑜(𝜖3) to get 

ℍ[𝑋] ≈ −∫ 𝑝̂𝑋(𝜉) log 𝑝̂𝑋(𝜉) 𝑑𝜉
Ω

 

≈ −∫ 𝜙(𝜉) (1 +
𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)(log𝜙(𝜉) +

𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!Ω

−
1

2
(
𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)

2

)𝑑𝜉 

= −∫𝜙(𝜉) log𝜙(𝜉) 𝑑𝜉
Ω

+∫ 𝜙(𝜉) log𝜙(𝜉) (
𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)𝑑𝜉

Ω⏟                              
=0

 

−∫ 𝜙(𝜉) (
𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)𝑑𝜉

Ω⏟                          
=0

−
1

2
∫ 𝜙(𝜉) (

𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)

2

𝑑𝜉
Ω

 

+
1

2
∫ 𝜙(𝜉) (

𝜅3[𝑋]ℎ3(𝜉)

3!
+
𝜅4[𝑋]ℎ4(𝜉)

4!
)

3

𝑑𝜉
Ω⏟                          

≈0

 

≈ ℍ[𝑍] −
1

2
(
𝜅3[𝑋]

2

3!
+
𝜅4[𝑋]

2

4!
) 

(22) 

Here we have used the orthogonality in (20), and in particular the fact that ℎ3(𝜉) and ℎ4(𝜉) are orthogonal 

to any second-order polynomials. Furthermore, because both 𝜅3[𝑋] and 𝜅4[𝑋] are small, their third order 

monomials are much smaller than terms involving only second order monomials. Given the results in (22), 

we may approximate the negentropy of random variable 𝑋 that is close to a Gaussian by 

Θ[𝑋] = ℍ[𝑍] − ℍ[𝑋] =
𝜅3[𝑋]

2

12
+
𝜅4[𝑋]

2

48
=
𝔼[𝑋3]2

12
+
kurt[𝑋]2

48
 

where        kurt[𝑋] = 𝔼[𝑋4] − 3𝔼[𝑋2]2 

(23) 

It is obvious that this approximation of negentropy is computationally very efficient. However, it 

possesses another issue that it is very sensitive to outliers. It mainly measures the tails and is largely 
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unaffected by structure near the center of the distribution. In order to mitigate this issue, another more 

robust approximation of negentropy is developed as follows. 

2.5. Approximation of Negentropy by Nonpolynomial Functions 

 Let’s assume again that we have observed (or estimated) a number of expectations of different 

functions of 𝑋 as shown in (6). The function 𝐹𝑖(𝜉) are in general not polynomials. Similarly we make a 

simple approximation 𝑝𝑋(𝜉) of the maximum entropy density based on the assumption that the true 

density 𝑝𝑋(𝜉) is not far from the Gaussian density of the same mean and variance. To make it simpler, 

let’s assume that the 𝑋 has zero mean and unit variance so that we can put two additional constraints into 

(6), defined by 

𝐹𝑛+1(𝜉) = 𝜉, 𝑐𝑛+1 = 𝔼[𝑋] = 0        and        𝐹𝑛+2(𝜉) = 𝜉
2, 𝑐𝑛+2 = 𝔼[𝑋

2] = 1 (24) 

which makes the (10) into 

𝑝𝑋(𝜉) = 𝐴 exp(∑𝑎𝑖𝐹𝑖(𝜉)

𝑛+2

𝑖=1

) (25) 

To further simplify the calculations, let us make another, purely technical assumption: The 

functions 𝐹𝑖(𝜉), form an orthonormal system by the measure 𝜙(𝜉) and are orthogonal to all polynomials 

up to second degree (similar to the orthogonality of Hermite polynomials). In other words, we have 

𝔼[𝐹𝑖(𝑍)𝐹𝑗(𝑍)] = ∫𝜙(𝜉)𝐹𝑖(𝜉)𝐹𝑗(𝜉)𝑑𝜉
Ω

= 𝛿(𝑖, 𝑗)  ∀  𝑖 = 1,⋯ , 𝑛     and     𝛿(𝑖, 𝑗) = {
1 if  𝑖 = 𝑗
0 if  𝑖 ≠ 𝑗

 

𝔼[𝐹𝑖(𝑍)𝑍
𝑘] = ∫𝜙(𝜉)𝐹𝑖(𝜉)𝜉

𝑘𝑑𝜉
Ω

= 0  ∀  𝑘 = 0, 1, 2 

(26) 

where 𝑍 is a standard Gaussian. Due to the assumption of near-gaussianity, the exponential in (25) is not 

far from exp(−𝜉2/2), thus all the other 𝑎𝑖 in (25) are small compared to 𝑎𝑛+2 ≈ −1/2. Hence we can 

make a first-order approximation of the exponential function using expansion exp(𝜖) ≈ 1 + 𝜖 + 𝑜(𝜖2)  

𝑝𝑋(𝜉) = 𝐴 exp(∑𝑎𝑖𝐹𝑖(𝜉)

𝑛+2

𝑖=1

)  = 𝐴 exp (−
𝜉2

2
+ 𝑎𝑛+1𝜉 +

2𝑎𝑛+2 + 1

2
𝜉2 +∑𝑎𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

) (27) 
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≈ 𝒜𝜙(𝜉) (1 + 𝑎𝑛+1𝜉 +
2𝑎𝑛+2 + 1

2
𝜉2 +∑𝑎𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

)         where        𝒜𝜙(𝜉) = 𝐴 exp (−
𝜉2

2
) 

By orthogonality in (26) and use the following expectation of powers of standard Gaussian 

𝔼[𝑍] = 0, 𝔼[𝑍2] = 1, 𝔼[𝑍3] = 0, 𝔼[𝑍4] = 3 (28) 

we can derive a series of equations as follows 

∫ 𝑝̂𝑋(𝜉)𝑑𝜉
Ω

= 𝒜𝔼 [1 + 𝑎𝑛+1𝑍 +
2𝑎𝑛+2 + 1

2
𝑍2 +∑𝑎𝑖𝐹𝑖(𝑍)

𝑛

𝑖=1

] = 𝒜 (
3

2
+ 𝑎𝑛+2) = 1 

∫ 𝑝̂𝑋(𝜉)𝜉𝑑𝜉
Ω

= 𝒜𝔼 [𝑍 + 𝑎𝑛+1𝑍
2 +

2𝑎𝑛+2 + 1

2
𝑍3 +∑𝑎𝑖𝐹𝑖(𝑍)𝑍

𝑛

𝑖=1

] = 𝒜𝑎𝑛+1 = 0 

∫ 𝑝̂𝑋(𝜉)𝜉
2𝑑𝜉

Ω

= 𝒜𝔼[𝑍2 + 𝑎𝑛+1𝑍
3 +

2𝑎𝑛+2 + 1

2
𝑍4 +∑𝑎𝑖𝐹𝑖(𝑍)𝑍

2

𝑛

𝑖=1

] = 𝒜 (
5

2
+ 3𝑎𝑛+2) = 1 

∫ 𝑝̂𝑋(𝜉)𝐹𝑖(𝜉)𝑑𝜉
Ω

= 𝒜𝔼 [𝐹𝑖(𝑍)(1 + 𝑎𝑛+1𝑍 +
2𝑎𝑛+2 + 1

2
𝑍2 +∑𝑎𝑗𝐹𝑗(𝑍)

𝑛

𝑗=1

)] = 𝒜𝑎𝑖 = 𝑐𝑖 

(29) 

These equations can be solved to give  

𝒜 = 1, 𝑎𝑖 = 𝑐𝑖 ∀ 𝑖 = 1,⋯ , 𝑛, 𝑎𝑛+1 = 0, 𝑎𝑛+2 = −
1

2
 (30) 

The approximative maximum entropy density, denoted by 𝑝̂𝑋(𝜉), can then be obtained from (27) using 

the solved constants, that is 

𝑝̂𝑋(𝜉) = 𝜙(𝜉) (1 +∑𝑐𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

)     with    𝑐𝑖 = 𝔼[𝐹𝑖(𝑋)] (31) 

Given the density above, we can approximate the differential entropy as 

ℍ[𝑋] ≈ −∫ 𝑝̂𝑋(𝜉) log 𝑝̂𝑋(𝜉) 𝑑𝜉
Ω

 

≈ −∫ 𝜙(𝜉) (1 +∑𝑐𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

)(log𝜙(𝜉) + log (∑𝑐𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

−
1

2
(∑𝑐𝑖𝐹𝑖(𝜉)

𝑛

𝑖=1

)

2

))𝑑𝜉
Ω

 

(32) 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

10 

 

≈ ℍ[𝑍] −∑𝑐𝑖 𝔼[log𝜙(𝑍) 𝐹𝑖(𝑍)]⏟          
=0

𝑛

𝑖=1

−∑𝑐𝑖 𝔼[𝐹𝑖(𝑍)]⏟    
=0

𝑛

𝑖=1

−
1

2
∑ 𝑐𝑖𝑐𝑗𝔼[𝐹𝑖(𝑍)𝐹𝑗(𝑍)]

𝑛

𝑖,𝑗=1

 

= ℍ[𝑍] −
1

2
∑𝑐𝑖

2

𝑛

𝑖=1

 

where another approximative expansion (1 + 𝜖) log(1 + 𝜖) ≈ 𝜖 + 𝜖2/2 + 𝑜(𝜖3)  has been applied 

considering the quantity 𝜖 is much smaller than 1. The negentropy approximation is then given by 

Θ[𝑋] =
1

2
∑𝑐𝑖

2

𝑛

𝑖=1

=
1

2
∑𝔼[𝐹𝑖(𝑋)]

2

𝑛

𝑖=1

 (33) 

 There is a special and yet simple case of (31) can be obtained by using two functions: an odd 

function 𝐺1(𝜉) and an even function 𝐺2(𝜉). The odd function measures the asymmetry and the even 

function measures the dimension of bimodality vs. peak at zero, closely related to sub- vs. super-

gaussianity [5]. First we define 𝐹1(𝜉) and 𝐹2(𝜉) as 

𝐹1(𝜉) =
𝐺1(𝜉) + 𝛼𝜉

𝜆1
, 𝐹2(𝜉) =

𝐺2(𝜉) + 𝛽1 + 𝛽2𝜉
2

𝜆2
 (34) 

Since 𝐺1(𝜉) and 𝐺2(𝜉)  are odd and even function respectively, and so are the 𝐹1(𝜉) and 𝐹2(𝜉), the 

orthogonality 𝔼[𝐹1(𝑍)𝐹2(𝑍)] = 0 is automatically satisfied. To determine constants 𝛼, 𝛽1, 𝛽2, 𝜆1, 𝜆2, the 

functions 𝐹1(𝜉) and 𝐹2(𝜉) must satisfy the orthonormality in (26) by measure 𝜙(𝜉), which defines the 

following equations 

𝔼[𝐹1(𝑍)
2] =

𝔼[𝐺1(𝑍)
2] + 2𝛼𝔼[𝐺1(𝑍)𝑍] + 𝛼

2𝔼[𝑍2]

𝜆1
2 =

𝔼[𝐺1(𝑍)
2] + 2𝛼𝔼[𝐺1(𝑍)𝑍] + 𝛼

2

𝜆1
2 = 1 

𝔼[𝐹1(𝑍)𝑍] =
𝔼[𝐺1(𝑍)𝑍] + 𝛼𝔼[𝑍

2]

𝜆1
=
𝔼[𝐺1(𝑍)𝑍] + 𝛼

𝜆1
= 0 

𝔼[𝐹2(𝑍)
2] =

𝔼[𝐺2(𝑍)
2] + 𝛽1

2 + 𝛽2
2𝔼[𝑍4] + 2𝛽1𝔼[𝐺2(𝑍)] + 2𝛽1𝛽2𝔼[𝑍

2] + 2𝛽2𝔼[𝐺2(𝑍)𝑍
2]

𝜆2
2

=
𝔼[𝐺2(𝑍)

2] + 𝛽1
2 + 3𝛽2

2 + 2𝛽1𝔼[𝐺2(𝑍)] + 2𝛽1𝛽2 + 2𝛽2𝔼[𝐺2(𝑍)𝑍
2]

𝜆2
2 = 1 

(35) 
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𝔼[𝐹2(𝑍)] =
𝔼[𝐺2(𝑍)] + 𝛽1 + 𝛽2𝔼[𝑍

2]

𝜆2
=
𝔼[𝐺2(𝑍)] + 𝛽1 + 𝛽2

𝜆2
= 0 

𝔼[𝐹2(𝑍)𝑍
2] =

𝔼[𝐺2(𝑍)𝑍
2] + 𝛽1𝔼[𝑍

2] + 𝛽2𝔼[𝑍
4]

𝜆2
=
𝔼[𝐺2(𝑍)𝑍

2] + 𝛽1 + 3𝛽2
𝜆2

= 0 

The constants can be estimated from the equations above by 

𝔼[𝐺1(𝑍)𝑍] = −𝛼, 𝔼[𝐺1(𝑍)
2] = 𝜆1

2 + 𝛼2, 𝔼[𝐺2(𝑍)] = −𝛽1 − 𝛽2 

𝔼[𝐺2(𝑍)𝑍
2] = −𝛽1 − 3𝛽2, 𝔼[𝐺2(𝑍)

2] = 𝜆2
2 + 𝛽1

2 + 2𝛽1𝛽2 + 3𝛽2
2 

(36) 

Given the assumption (24) that 𝑋 has zero mean and unit variance, we can further write 

𝑐1 = 𝔼[𝐹1(𝑋)] =
𝔼[𝐺1(𝑋)] + 𝛼𝔼[𝑋]

𝜆1
=
𝔼[𝐺1(𝑋)]

𝜆1
 

𝑐2 = 𝔼[𝐹2(𝑋)] =
𝔼[𝐺2(𝑋)] + 𝛽1 + 𝛽2𝔼[𝑋

2]

𝜆2
=
𝔼[𝐺2(𝑋)] + 𝛽1 + 𝛽2

𝜆2
=
𝔼[𝐺2(𝑋)] − 𝔼[𝐺2(𝑍)]

𝜆2
 

(37) 

where the denominators are estimated as follows 

𝜆1
2 = 𝔼[𝐺1(𝑍)

2] − 𝔼[𝐺1(𝑍)𝑍]
2 

𝜆2
2 = 𝔼[𝐺2(𝑍)

2] − 𝔼[𝐺2(𝑍)]
2 −

1

2
(𝔼[𝐺2(𝑍)] − 𝔼[𝐺2(𝑍)𝑍

2])2 

(38) 

Hence the negentropy approximation in (33) can be expressed as 

Θ[𝑋] =
𝑐1
2 + 𝑐2

2

2
= 𝑘1𝔼[𝐺1(𝑋)]

2 + 𝑘2(𝔼[𝐺2(𝑋)] − 𝔼[𝐺2(𝑍)])
2, 𝑘1 =

1

2𝜆1
2 , 𝑘2 =

1

2𝜆2
2 (39) 

Note that in real applications, the assumption that the true density of 𝑋 is not too far from the Gaussian 

can be easily violated. However, even in the case that the approximation is not very accurate, the (39) can 

still be used to construct a non-gaussianity measure that is consistent in the sense that it is always 

nonnegative, and equal to zero if 𝑋 is a Gaussian.  

 To make the approximation more robust, the functions 𝐺𝑖(𝜉) must be chosen wisely. The selective 

criteria should consider: 1). estimation of 𝔼[𝐺𝑖(𝑋)] should be statistically easy and insensitive to outliers. 

2). the 𝐺𝑖(𝜉) must not grow faster than quadratically to ensure that the density in (31) is integrable and 

therefore to ensure that the maximum entropy distribution exists in the first place. 3). the 𝐺𝑖(𝜉) must 
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capture aspects of the distribution of 𝑋 that are pertinent in the computation of entropy. For example, if 

we use simple polynomials (which apparently are bad choices), we would end up with something very 

similar to what we have in the preceding section. This can be seen by letting 𝐺1(𝜉) = 𝜉
3 and 𝐺2(𝜉) = 𝜉

4, 

then from (38) (40)we find 

𝜆1
2 = 𝔼[𝑍6] − 𝔼[𝑍4]2 = 15 − 9 = 6 

𝜆2
2 = 𝔼[𝑍8] − 𝔼[𝑍4]2 −

1

2
(𝔼[𝑍4] − 𝔼[𝑍6])2 = 105 − 9 −

1

2
(3 − 15)2 = 24 

(40) 

and hence the negentropy approximation in (39) becomes 

Θ[𝑋] =
𝔼[𝑋3]2

12
+
(𝔼[𝑋4] − 3)2

48
 (41) 

which is identical to that of (23). 

When using only one non-quadratic even function, an even simpler approximation of negentropy 

can be obtained. This amounts to omitting the term associated with the odd function in (39) to give 

Θ[𝑋] ∝ (𝔼[𝐺(𝑋)] − 𝔼[𝐺(𝑍)])2 (42) 

It has been suggested [6] that the following two functions exhibit very good properties 

𝐺(𝜉) =
1

𝑎
log cosh(𝑎𝜉)  ∀ 1 ≤ 𝑎 ≤ 2        and        𝐺(𝜉) = −exp(−

𝜉2

2
) (43) 

The first one is useful for general purposes, while the second on may be highly robust. 

3. FASTICA USING NEGENTROPY 

In this section, we are going to summarize a numerical method, known as FastICA method [7], for 

ICA estimation. Suppose we are able to observe signal 𝑉 such that 

𝑉 = 𝑀𝑆 (44) 

are linearly mixed by an 𝑛 × 𝑛 invertible matrix 𝑀 of independent source signal 𝑆. Both 𝑉 and 𝑆 are 

𝑛 × 1 vectors. We want to the independent components by maximizing the statistical independence of the 

estimated components.  

3.1. Preprocessing for ICA 
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Preprocessing the observed signal 𝑉  for ICA generally involves two steps: centering and 

whitening. Centering means to subtract the mean from the signal. Whitening is to linearly transform the 

observed signal so that the transformed signal is white, i.e. its components are uncorrelated and their 

variances equal unity. While centering appears simple, there can be many ways to perform whitening. One 

of the methods we want to discuss is the PCA whitening, which performs eigenvalue decomposition on 

covariance matrix Σ of the observed signal 𝑉 such that 

Σ[𝑉] = 𝐸Λ𝐸′ (45) 

Whitening can then be done on the centered signal by 

𝑋 = Λ−
1
2𝐸′(𝑉 − 𝔼[𝑉]) (46) 

where 𝑋 is the whitened signal that will be subject to FastICA estimation. After centering and whitening, 

we can show that the signal 𝑋 has the following properties 

𝔼[𝑋] = 0        and        𝔼[𝑋𝑋′] = 𝐼 (47) 

where 𝐼 is an identity matrix. 

3.2. Maximization of Negentropy 

Suppose we want to find an invertible matrix 𝐵  such that the linear transformation 𝑌 = 𝐵𝑋 

produces a signal 𝑌 whose components are mutually independent with unit variance. The independence 

of the components requires that they are uncorrelated, and in the whitened space we must have  

𝐼 = 𝔼[𝑌𝑌′] = 𝔼[𝐵𝑋𝑋′𝐵′] = 𝐵𝐵′ (48) 

This means after whitening, the matrix 𝐵 can be taken to be orthonomal (i.e. orthogonal and normalized). 

Hence we want to maximize the negentropy of each component subject to the constraint that components 

are mutually independent.  

Let 𝑏 be the transpose of a row vector of matrix 𝐵. We want to find the 𝑏 such that it maximizes 

the negentropy of the component on the unit sphere, i.e. 𝑏′𝑏 = 1. The constrained maximization can be 

done by using Lagrange multiplier, that is 
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ℒ(𝑏, 𝜆) = (𝔼[𝐺(𝑏′𝑋)] − 𝔼[𝐺(𝑍)])2 + 𝜆(𝑏′𝑏 − 1) (49) 

The first term on the right hand side comes from the approximation of negentropy and the second is the 

optimization constraint. The optimality condition requires  

𝜕ℒ(𝑏, 𝜆)

𝜕𝑏
= 2𝛾𝔼[𝐺̇(𝑏′𝑋)𝑋] + 2𝜆𝑏 = 0    where    𝛾 = 𝔼[𝐺(𝑏′𝑋)] − 𝔼[𝐺(𝑍)] 

⟹ 𝔼[𝐺̇(𝑏′𝑋)𝑋] +
𝜆

𝛾
𝑏 = 0 

(50) 

Since 𝛾 is a scalar, the vector 𝔼[𝐺̇(𝑏′𝑋)𝑋] at maximum must be equal to vector 𝑏 multiplied by a scalar 

constant. In order words, the vector 𝔼[𝐺̇(𝑏′𝑋)𝑋] must point in the same direction of 𝑏. Because in every 

iteration, the vector 𝑏 is normalized, this leads to a fixed point scheme 

𝑏 ← Normalize(𝔼[𝐺̇(𝑏′𝑋)𝑋]) (51) 

However, the fixed point iteration is often accompanied by slow convergence rate. Instead, the solution is 

sought by solving a nonlinear equation for an arbitrary scalar 𝛽    

𝔼[𝐺̇(𝑏′𝑋)𝑋] + 𝛽𝑏 = 0 (52) 

using Newton’s method. Denoting the left hand side of (52) by 

𝐹(𝑏) = 𝔼[𝐺̇(𝑏′𝑋)𝑋] + 𝛽𝑏 (53) 

the Newton’s method defines another fixed point iteration, such that 

𝑏 ← Normalize (𝑏 − (𝐹̇(𝑏))
−1

𝐹(𝑏)) = Normalize (𝑏 −
𝔼[𝐺̇(𝑏′𝑋)𝑋] + 𝛽𝑏

𝔼[𝐺̈(𝑏′𝑋)] + 𝛽
) (54) 

where the gradient matrix 𝐹̇(𝑏) can be approximated by  

 𝐹̇(𝑏) = 𝔼[𝐺̈(𝑏′𝑋)𝑋𝑋′] + 𝛽𝐼 ≈ 𝔼[𝐺̈(𝑏′𝑋)]𝔼[𝑋𝑋′] + 𝛽𝐼 = (𝔼[𝐺̈(𝑏′𝑋)] + 𝛽)𝐼 (55) 

given that the components of whitened 𝑋 are uncorrelated (though unnecessarily independent). Since the 

quantity 𝔼[𝐺̈(𝑏′𝑋)] + 𝛽 is a scalar and would be eventually eliminated by the normalization anyway, we 

can multiply both sides of (54) by the scalar and simplify the fixed point iteration to 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

15 

 

𝑏 ← Normalize(𝔼[𝐺̇(𝑏′𝑋)𝑋] − 𝔼[𝐺̈(𝑏′𝑋)]𝑏) (56) 

Once the iteration converges (e.g. the ‖Δ𝑏‖ < 𝜖  for a small number 𝜖 ), then the 𝑏′𝑋  is one of the 

independent components that we want to estimate. As a summary, we list the non-quadratic nonlinear 

candidate functions in (43) and their first and second derivatives as follows (1 ≤ 𝑎 ≤ 2) 

𝐺(𝜉) =
1

𝑎
log cosh(𝑎𝜉) , 𝐺̇(𝜉) = tanh(𝑎𝜉) , 𝐺̈(𝜉) = 𝑎(1 − tanh(𝑎𝜉)2) 

𝐺(𝜉) = −exp (−
𝜉2

2
) , 𝐺̇(𝜉) = 𝜉 exp(−

𝜉2

2
) , 𝐺̈(𝜉) = (1 − 𝜉2) exp (−

𝜉2

2
) 

(57) 

3.3. Symmetric Orthogonalization 

In certain applications, it may be desirable to use a symmetric decorrelation, in which no vectors 

are “privileged” over others. This means that the vectors 𝑏’s are not estimated one by one; instead, they 

are estimated in parallel by a fixed point iteration derived from (56) 

𝐵 ← SymmetricOrthonomalize(𝔼[𝐺̇(𝐵𝑋)𝑋′] − Diag(𝔼[𝐺̈(𝐵𝑋)])𝐵) (58) 

where the symmetric orthonomalization of matrix 𝐵 is given by 

SymmetricOrthonomalize(𝐵) = (𝐵𝐵′)−
1
2𝐵 (59) 

with the inverse square root of matrix 𝐵𝐵′ estimated from eigenvalue decomposition 

(𝐵𝐵′)−
1
2 = 𝐸Λ−

1
2𝐸′    for    𝐵𝐵′ = 𝐸Λ𝐸′ (60) 

Alternatively, another iteration based symmetric orthonomalization can be done by first normalizing 𝐵 ←

𝐵/‖𝐵‖ and then running the iteration 

𝐵 ←
3

2
𝐵 −

1

2
𝐵𝐵′𝐵 (61) 

until the matrix 𝐵𝐵′ is sufficiently close to an identity. 
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