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ABSTRACT 

Heston stochastic volatility moded has been widely used in financial derivative pricing and risk 

management. One of the reasons for that is that vanilla options in Heston model have close form 

solutions. This makes the calibration of the model computationally much efficient and accurate. The 

essay in the first half introduces Fourier transform method for option pricing and its application in the 

Heston model. Additionally, a characteristic function based method is also described, which extends the 

Heston model to have time-dependent model parameters. 

In the second half of the essay, we present a detailed implementation of Finite element method 

(FEM) for option pricing in the Heston model. FEM has been developed for decades for solving partial 

differential equations arise from various science and engineering problems. It is well known for 

requiring a low order storage and for its capability to handle complicated irregular computational 

domains comparing with finite difference method (FDM). This characteristic advantages make FEM an 

ideal numerical method for pricing exotic options.   
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This note is to summarize Heston stochastic volatility model. It was initially prepared as degree 

essay for my M.S. in Mathematical Finance, which only covered the barrier option pricing by solving 

PDE using finite element method (i.e. the Chapter 2.5 in this note). I have been continuously expanding 

it with more mathematical background, such as the derivation of market price of spot/volatility risk, the 

Fourier transform method for option pricing, the derivation of characteristic function of the joint spot-

variance process, the probability distribution of spot return, the piecewise time dependent Heston 

parameters, etc. The very first topic we want to begin with is the derivation of the Kolmogorov forward 

and backward equations, which fundamentally govern the transition probability density function of a 

diffusion process.  

1. KOLMOGOROV FORWARD AND BACKWARD EQUATIONS 

The time evolution of the transition probability density function is governed by Kolmogorov 

forward and backward equations, which will be introduced as follows, without loss of generality, in 

multi-dimension. 

1.1. Kolmogorov Forward Equation 

Let’s consider the following 𝑚-dimensional stochastic spot process 𝑋𝑡 ∈ ℝ
𝑚  driven by an 𝑛-

dimensional Brownian motion 𝑊𝑡 whose correlation matrix 𝜌 is given by 𝜌𝑑𝑡 = 𝑑𝑊𝑡𝑑𝑊𝑡
′ 

𝑑𝑋𝑡
𝑚×1

= 𝐴(𝑡, 𝑋𝑡)
𝑚×1

𝑑𝑡
1×1

+ 𝐵(𝑡, 𝑋𝑡)
𝑚×𝑛

𝑑𝑊𝑡
𝑛×1

 (1) 

We derive the dynamics of ℎ, where ℎ:ℝ𝑚 ⟶ℝ is a scalar-valued Borel-measurable function only on 

variable 𝑋𝑡  

𝑑ℎ(𝑋𝑡)
1×1

= 𝐽ℎ
1×𝑚

 𝑑𝑋𝑡
𝑚×1

+
1

2
𝑑𝑋𝑡

′

1×𝑚
 𝐻ℎ
𝑚×𝑚

 𝑑𝑋𝑡
𝑚×1

= 𝐽ℎ𝐴𝑑𝑡 + 𝐽ℎ𝐵𝑑𝑊𝑡 +
1

2
𝑑𝑊𝑡

′𝐵′𝐻ℎ𝐵𝑑𝑊𝑡 (2) 

where 𝐽ℎ is the 1 × 𝑚 Jacobian (i.e. the same as gradient if ℎ is a scalar-valued function) and 𝐻ℎ the 

𝑚 ×𝑚 Hessian (with subscripts now denoting the indices of vector components) 
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𝐽ℎ = (
𝜕ℎ

𝜕𝑋1
⋯

𝜕ℎ

𝜕𝑋𝑚
) , 𝐻ℎ =

(

  
 

𝜕2ℎ

𝜕𝑋1
2 ⋯

𝜕2ℎ

𝜕𝑋1𝜕𝑋𝑚
⋮ ⋱ ⋮
𝜕2ℎ

𝜕𝑋𝑚𝜕𝑋1
⋯

𝜕2ℎ

𝜕𝑋𝑚2 )

  
 

 (3) 

Expanding the expression in (2), we have 

𝑑ℎ(𝑋𝑡) =∑
𝜕ℎ

𝜕𝑋𝑖
𝐴𝑖𝑑𝑡

𝑚

𝑖=1

+∑
𝜕ℎ

𝜕𝑋𝑖

𝑚

𝑖=1

∑𝐵𝑖𝑘𝑑𝑊𝑘,𝑡

𝑛

𝑘=1

+
1

2
∑

𝜕2ℎ

𝜕𝑋𝑖𝜕𝑋𝑗
∑𝐵𝑖𝑘𝜌𝑖𝑗𝐵𝑗𝑘𝑑𝑡

𝑛

𝑘=1

𝑚

𝑖,𝑗=1

= (∑𝐴𝑖
𝜕ℎ

𝜕𝑋𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2ℎ

𝜕𝑋𝑖𝜕𝑋𝑗

𝑚

𝑖,𝑗=1

)𝑑𝑡 +∑
𝜕ℎ

𝜕𝑋𝑖

𝑚

𝑖=1

∑𝐵𝑖𝑘𝑑𝑊𝑘,𝑡

𝑛

𝑘=1

 

(4) 

where 𝛴 = 𝐵𝜌𝐵′  is the 𝑚 ×𝑚  instantaneous variance-covariance matrix of 𝑑𝑋 . Integrating on both 

sides of (4) from initial time 𝑠 to time 𝑡, we have 

ℎ(𝑋𝑡) − ℎ(𝑋𝑠) = ∫ (∑𝐴𝑖
𝜕ℎ

𝜕𝑋𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2ℎ

𝜕𝑋𝑖𝜕𝑋𝑗

𝑚

𝑖,𝑗=1

)𝑑𝑢
𝑡

𝑠

+∫ ∑
𝜕ℎ

𝜕𝑋𝑖

𝑚

𝑖=1

∑𝐵𝑖𝑘𝑑𝑊𝑘,𝑡

𝑛

𝑘=1

𝑡

𝑠

 (5) 

Taking expectation on both sides of (5), we get (using notation 𝔼𝑡[∙] = 𝔼[∙|ℱ𝑡]) 

LHS = 𝔼𝑠[ℎ(𝑋𝑡)] − ℎ(𝑋𝑠) = ∫ℎ𝑥𝑝𝑡,𝑥|𝑠,𝛼𝑑𝑥
𝛺

− ℎ𝛼 

RHS = ∫ ∑𝔼𝑠 [𝐴𝑖
𝜕ℎ

𝜕𝑋𝑖
]

𝑚

𝑖=1

𝑑𝑢
𝑡

𝑠

+
1

2
∫ ∑ 𝔼𝑠 [𝛴𝑖𝑗

𝜕2ℎ

𝜕𝑋𝑖𝜕𝑋𝑗
]

𝑚

𝑖,𝑗=1

𝑑𝑢
𝑡

𝑠

 

(6) 

where 𝑝𝑡,𝑥|𝑠,𝛼 is the transition probability density function having 𝑋𝑡 = 𝑥 at 𝑡 given 𝑋𝑠 = 𝛼 at 𝑠 (i.e. if 

we solve the equation (1) with the initial condition 𝑋𝑠 = 𝛼 ∈ 𝛺 ≡ ℝ
𝑚, then the random variable 𝑋𝑡 =

𝑥 ∈ 𝛺 has a density 𝑝𝑡,𝑥|𝑠,𝛼  in the 𝑥 variable at time 𝑡). Differentiating (6) with respect to 𝑡 on both 

sides, we get 
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∫ ℎ𝑥
𝜕𝑝𝑡,𝑥|𝑠,𝛼
𝜕𝑡

𝑑𝑥
𝛺

=∑𝔼𝑠 [𝐴𝑖
𝜕ℎ

𝜕𝑋𝑖
]

𝑚

𝑖=1

+
1

2
∑ 𝔼𝑠 [𝛴𝑖𝑗

𝜕2ℎ

𝜕𝑋𝑖𝜕𝑋𝑗
]

𝑚

𝑖,𝑗=1

=∑∫ 𝑝𝑡,𝑥|𝑠,𝛼𝐴𝑖
𝜕ℎ𝑥
𝜕𝑥𝑖

𝑑𝑥
𝛺

𝑚

𝑖=1

+
1

2
∑ ∫ 𝑝𝑡,𝑥|𝑠,𝛼𝛴𝑖𝑗

𝜕2ℎ𝑥
𝜕𝑥𝑖𝜕𝑥𝑗

𝑑𝑥
𝛺

𝑚

𝑖,𝑗=1

 

(7) 

If we assume the probability density 𝑝 and its first derivatives 𝜕𝑝/𝜕𝑥𝑖 vanish at a higher order of rate 

than ℎ and 𝜕ℎ/𝜕𝑥𝑖 as 𝑥𝑖 → ±∞ ∀ 𝑖 = 1,⋯ ,𝑚, we can integrate by parts for the right hand side of (7), 

once for the first integral and twice for the second 

∫ 𝐴𝑖𝑝
𝜕ℎ𝑥
𝜕𝑥𝑖

𝑑𝑥
𝛺

= ∫ 𝐴𝑖ℎ𝑥𝑝|𝑥𝑖 =−∞
+∞

⏟        
=0

𝑑𝑥̅𝑖
𝛺̅𝑖

−∫ ℎ𝑥
𝜕(𝐴𝑖𝑝)

𝜕𝑥𝑖
𝑑𝑥

𝛺

 

∫ 𝛴𝑖𝑗
𝜕2ℎ𝑥
𝜕𝑥𝑖𝜕𝑥𝑗

𝑝𝑑𝑥
𝛺

= ∫ 𝛴𝑖𝑗
𝜕ℎ𝑥
𝜕𝑥𝑗

𝑝|
𝑥𝑖=−∞

+∞

⏟          
=0

𝑑𝑥̅𝑖
𝛺̅𝑖

−∫
𝜕(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖

𝜕ℎ𝑥
𝜕𝑥𝑗

𝑑𝑥
𝛺

= −∫ ℎ𝑥
𝜕(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖
|
𝑥𝑗=−∞

+∞

⏟          
=0

𝑑𝑥̅𝑗
𝛺̅𝑗

+∫ ℎ𝑥
𝜕2(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑑𝑥

𝛺

 

where        ∫ (∙)𝑑𝑥̅𝑖
𝛺̅𝑖

= ∫ ⋯∫ ∫ ⋯∫(∙)𝑑𝑥1
ℝ

⋯𝑑𝑥𝑖−1
ℝ

𝑑𝑥𝑖+1
ℝ

⋯𝑑𝑥𝑚
ℝ

 

(8) 

Plugging the results of (8) into (7), we have 

∫ ℎ𝑥
𝜕𝑝

𝜕𝑡
𝑑𝑥

𝛺

= −∑∫ ℎ𝑥
𝜕(𝐴𝑖𝑝)

𝜕𝑥𝑖
𝑑𝑥

𝛺

𝑚

𝑖=1

+
1

2
∑ ∫ ℎ𝑥

𝜕2(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖𝜕𝑥𝑗
𝑑𝑥

𝛺

𝑚

𝑖,𝑗=1

 

⟹∫ ℎ𝑥 (
𝜕𝑝

𝜕𝑡
+∑

𝜕(𝐴𝑖𝑝)

𝜕𝑥𝑖

𝑚

𝑖=1

−
1

2
∑

𝜕2(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

)𝑑𝑥
𝛺

= 0 

(9) 

By the arbitrariness of function ℎ, we conclude that for any 𝑥 ∈ 𝛺 the density function 𝑝𝑡,𝑥|𝑠,𝛼 satisfies 

𝜕𝑝

𝜕𝑡
+∑

𝜕(𝐴𝑖𝑝)

𝜕𝑥𝑖

𝑚

𝑖=1

−
1

2
∑

𝜕2(𝛴𝑖𝑗𝑝)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

= 0, lim
𝑡→𝑠

𝑝𝑡,𝑥|𝑠,𝛼 = 𝛿𝑥−𝛼, 𝛴 = 𝐵𝜌𝐵′  (10) 
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with 𝛿(∙)  the Dirac delta function. This is the multi-dimensional Fokker-Planck Equation (a.k.a. 

Kolmogorov Forward Equation) [1]. In this equation, the 𝑠 and 𝛼 are held constant, while the 𝑡 and 𝑥 

are variables (called “forward variables”). In the one-dimensional case, it reduces to  

𝜕𝑝

𝜕𝑡
+
𝜕(𝐴𝑝)

𝜕𝑥
−
1

2

𝜕2(𝐵2𝑝)

𝜕𝑥2
= 0 (11) 

where 𝐴 = 𝐴(𝑡, 𝑥) and 𝐵 = 𝐵(𝑡, 𝑥) are then scalar functions. 

1.2. Kolmogorov Backward Equation 

Let’s express conditional expectation 𝑔(𝑡, 𝑋𝑡) = 𝔼𝑡[ℎ(𝑋𝑇)]. Since for any 𝑡 ≤ 𝑣 ≤ 𝑇 we have  

𝑔(𝑡, 𝑋𝑡) = 𝔼𝑡[ℎ(𝑋𝑇)] = 𝔼𝑡[𝔼𝑣[ℎ(𝑋𝑇)]] = 𝔼𝑡[𝑔(𝑣, 𝑋𝑣)] (12) 

the 𝑔(𝑡, 𝑋𝑡)  is a martingale by the tower rule (i.e. If ℋ  holds less information than 𝒢 , then 

𝔼[𝔼[𝑋|𝒢]|ℋ] = 𝔼[𝑋|ℋ]). The dynamics of the 𝑔(𝑡, 𝑋𝑡) is given by  

𝑑𝑔 =
𝜕𝑔

𝜕𝑡
𝑑𝑡 + 𝐽𝑔

1×𝑚

 𝑑𝑋𝑡
𝑚×1

+
1

2
𝑑𝑋𝑡

′

1×𝑚
 𝐻𝑔
𝑚×𝑚

 𝑑𝑋𝑡
𝑚×1

=
𝜕𝑔

𝜕𝑡
𝑑𝑡 + 𝐽𝑔𝐴𝑑𝑡 + 𝐽𝑔𝐵𝑑𝑊𝑡 +

1

2
𝑑𝑊𝑡

′𝐵′𝐻𝑔𝐵𝑑𝑊𝑡 (13) 

where 𝐽𝑔 is the Jacobian and 𝐻𝑔 the Hessian of 𝑔 with respect to variable 𝑋 

[𝐽𝑔]𝑖 =
𝜕𝑔

𝜕𝑋𝑖
, [𝐻𝑔]𝑖𝑗 =

𝜕2𝑔

𝜕𝑋𝑖𝜕𝑋𝑗
 (14) 

Expanding (13), we have 

𝑑𝑔 = (
𝜕𝑔

𝜕𝑡
+∑𝐴𝑖

𝜕𝑔

𝜕𝑋𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2𝑔

𝜕𝑋𝑖𝜕𝑋𝑗

𝑚

𝑖,𝑗=1

)𝑑𝑡 +∑
𝜕𝑔

𝜕𝑋𝑖

𝑚

𝑖=1

∑𝐵𝑖𝑘𝑑𝑊𝑘,𝑡

𝑛

𝑘=1

 (15) 

Since 𝑔(𝑡, 𝑋𝑡) is a martingale, the 𝑑𝑡-term must vanish, which gives 

𝜕𝑔

𝜕𝑡
+∑𝐴𝑖

𝜕𝑔

𝜕𝑋𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2𝑔

𝜕𝑋𝑖𝜕𝑋𝑗

𝑚

𝑖,𝑗=1

= 0 (16) 

This is the multi-dimensional Feynman-Kac formula1.  

 
1 https://en.wikipedia.org/wiki/Feynman-Kac_formula 

https://en.wikipedia.org/wiki/Feynman-Kac_formula
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Using the transition probability density 𝑝𝑇,𝛽|𝑡,𝑥 for 𝑋𝑡 = 𝑥 at 𝑡 and 𝑋𝑇 = 𝛽 at 𝑇, we can further 

write the expectation as 

𝑔𝑡,𝑥 = 𝔼𝑡[ℎ(𝑋𝑇)] = ∫ℎ𝛽𝑝𝑇,𝛽|𝑡,𝑥𝑑𝛽
𝛺

 (17) 

The formula (16) defines that 

(
𝜕

𝜕𝑡
+∑𝐴𝑖

𝜕

𝜕𝑥𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

)∫ℎ𝛽𝑝𝑇,𝛽|𝑡,𝑥𝑑𝛽
𝛺

= 0 

⟹∫ ℎ𝛽 (
𝜕𝑝

𝜕𝑡
+∑𝐴𝑖

𝜕𝑝

𝜕𝑥𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

)𝑑𝛽
𝛺

= 0 

(18) 

By the arbitrariness of ℎ function, the transition probability density 𝑝𝑇,𝛽|𝑡,𝑥must satisfy 

𝜕𝑝

𝜕𝑡
+∑𝐴𝑖

𝜕𝑝

𝜕𝑥𝑖

𝑚

𝑖=1

+
1

2
∑ 𝛴𝑖𝑗

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖,𝑗=1

= 0, lim
𝑡→𝑇

𝑝𝑇,𝛽|𝑡,𝑥 = 𝛿𝑥−𝛽 , 𝛴 = 𝐵𝜌𝐵′ (19) 

This is the multi-dimensional Kolmogorov Backward Equation. In this equation, the 𝑇 and 𝛽 are held 

constant, while the 𝑡 and 𝑥 are variables (called “backward variables”). In the 1-D case, it reduces to  

𝜕𝑝

𝜕𝑡
+ 𝐴

𝜕𝑝

𝜕𝑥
+
1

2
𝐵2
𝜕2𝑝

𝜕𝑥2
= 0 (20) 

where 𝐴 = 𝐴(𝑡, 𝑥) and 𝐵 = 𝐵(𝑡, 𝑥) are again scalar functions. 
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2. HESTON MODEL 

In this chapter, we will briefly introduce the Heston stochastic volatility model, which has 

become quite popular in industry to model volatility smiles. One of the reasons for that is that vanilla 

options in Heston model have close form solutions. This makes the calibration of the model 

computationally much efficient and accurate. To understand these closed form formulas, we begin with 

the Fourier transform method for option pricing and its application to the Heston model. Additionally, a 

characteristic function based method is also discussed, which extends the Heston model to have 

piecewise constant time-dependent model parameters. 

2.1. Heston Stochastic Volatility Model 

The stochastic volatility in Heston’s model is a mean-reverting square-root process defined by 

the following stochastic differential equations (SDE) 

𝑑𝑋𝑡
𝑋𝑡

= (𝜇 − 𝑞)𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡 

𝑑𝑣𝑡 =  𝜖(𝜗 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊2,𝑡 

𝑑𝑊1,𝑡𝑑𝑊2,𝑡 = 𝜌𝑑𝑡 

(21) 

where 𝑡 denotes the time, 𝑋𝑡 the spot process, 𝜇 and 𝑞 the drift rate and dividend rate of the spot (or 

domestic rate and foreign rate in FX), 𝑣𝑡 the variance process, 𝜖 the mean reversion rate, 𝜗 the mean 

variance, 𝜉 the volatility of the variance and 𝑑𝑊1,𝑡, 𝑑𝑊2,𝑡  the two Brownian motions correlated by 𝜌 

under physical measure ℙ.  

2.1.1. Market Price of Risk 

In Black-Scholes model, a contingent claim is dependent on tradable asset 𝑋𝑡. The randomness 

in option value, for example, is solely determined by the randomness of the tradable asset 𝑋𝑡. Such 

uncertainty in value can be hedged by continuously trading the underlying asset. This makes the market 

complete (i.e. every contingent claim can be replicated). In a stochastic volatility model, a contingent 

claim is dependent on both the asset 𝑋𝑡 and its associated instantaneous volatility 𝑣𝑡. Since the volatility 
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itself is not tradable, this renders the market incomplete and results in many implications to the pricing 

of the options.  

Firstly let’s consider two arbitrary derivative securities (presume they are traded in markets) 

whose prices can be written as functions 𝑈(𝑡, 𝑋𝑡, 𝑣𝑡)  and 𝑉(𝑡, 𝑋𝑡, 𝑣𝑡)  of variables 𝑡 , 𝑋𝑡  and 𝑣𝑡 

respectively. We construct a self-financing portfolio with price 𝐿𝑡  by taking long on one share of 

𝑈(𝑡, 𝑋𝑡, 𝑣𝑡), short on 𝛤𝑡 shares of 𝑉(𝑡, 𝑋𝑡, 𝑣𝑡) and short on 𝛥𝑡 shares of 𝑋𝑡, that is 

𝐿𝑡 = 𝑈𝑡 − 𝛤𝑡𝑉𝑡 − 𝛥𝑡𝑋𝑡 (22) 

Following the Ito’s lemma, we can derive the price dynamics of the derivative as 

𝑑𝑈 =
𝜕𝑈

𝜕𝑡
𝑑𝑡 +

𝜕𝑈

𝜕𝑋
𝑑𝑋 +

1

2

𝜕2𝑈

𝜕𝑋2
𝑑𝑋𝑑𝑋 +

𝜕𝑈

𝜕𝑣
𝑑𝑣 +

1

2

𝜕2𝑈

𝜕𝑣2
𝑑𝑣𝑑𝑣 +

𝜕2𝑈

𝜕𝑣𝜕𝑋
𝑑𝑣𝑑𝑋 

=
𝜕𝑈

𝜕𝑡
𝑑𝑡 +

𝜕𝑈

𝜕𝑋
(𝜇 − 𝑞)𝑋𝑑𝑡 +

𝜕𝑈

𝜕𝑋
𝑋√𝑣𝑑𝑊1 +

𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
𝑑𝑡 +

𝜕𝑈

𝜕𝑣
𝜖(𝜗 − 𝑣)𝑑𝑡 +

𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊2

+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
𝑑𝑡 + 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
𝑑𝑡 

(23) 

and derive the price dynamics of the self-financing portfolio as 

𝑑𝐿 = 𝑑𝑈 − 𝛤𝑑𝑉 − 𝛥𝑑𝑋 − 𝛥𝑋𝑞𝑑𝑡 

= (
𝜕𝑈

𝜕𝑡
+
𝜕𝑈

𝜕𝑋
(𝜇 − 𝑞)𝑋 +

𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝜕𝑈

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
)𝑑𝑡 

−𝛤 (
𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑋
(𝜇 − 𝑞)𝑋 +

𝑣𝑋2

2

𝜕2𝑉

𝜕𝑋2
+
𝜕𝑉

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝑣𝜉2

2

𝜕2𝑉

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑉

𝜕𝑣𝜕𝑋
)𝑑𝑡 

+(
𝜕𝑈

𝜕𝑋
− 𝛥 − 𝛤

𝜕𝑉

𝜕𝑋
)𝑋√𝑣𝑑𝑊1 + (

𝜕𝑈

𝜕𝑣
− 𝛤

𝜕𝑉

𝜕𝑣
) 𝜉√𝑣𝑑𝑊2 − 𝛥(𝜇 − 𝑞)𝑋𝑑𝑡 − 𝛥𝑋𝑞𝑑𝑡 

(24) 

In order to eliminate both spot and volatility risk, we must have 

𝜕𝑈

𝜕𝑋
− 𝛥 − 𝛤

𝜕𝑉

𝜕𝑋
= 0,

𝜕𝑈

𝜕𝑣
− 𝛤

𝜕𝑉

𝜕𝑣
= 0 (25) 

and therefore  
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𝑑𝐿 = (
𝜕𝑈

𝜕𝑡
+
𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
−
𝜕𝑈

𝜕𝑋
𝑋𝑞)𝑑𝑡

− 𝛤 (
𝜕𝑉

𝜕𝑡
+
𝑣𝑋2

2

𝜕2𝑉

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑉

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑉

𝜕𝑣𝜕𝑋
−
𝜕𝑉

𝜕𝑋
𝑋𝑞)𝑑𝑡 

(26) 

In this case, the portfolio is riskless and must have a return at risk free rate in order to be arbitrage-free 

𝑑𝐿 = 𝑟𝐿𝑑𝑡 = 𝑟(𝑈 − 𝛤𝑉 − 𝛥𝑋)𝑑𝑡 = 𝑟𝑈𝑑𝑡 − 𝑟𝛤𝑉𝑑𝑡 − 𝑟
𝜕𝑈

𝜕𝑋
𝑋𝑑𝑡 + 𝑟𝛤

𝜕𝑉

𝜕𝑋
𝑋𝑑𝑡 (27) 

which in turn gives 

𝜕𝑈
𝜕𝑡
+
𝑣𝑋2

2
𝜕2𝑈
𝜕𝑋2

+
𝑣𝜉2

2
𝜕2𝑈
𝜕𝑣2

+ 𝑋𝑣𝜉𝜌
𝜕2𝑈
𝜕𝑣𝜕𝑋

+
𝜕𝑈
𝜕𝑋
𝑋(𝑟 − 𝑞) − 𝑟𝑈

𝜕𝑈
𝜕𝑣

 

=

𝜕𝑉
𝜕𝑡
+
𝑣𝑋2

2
𝜕2𝑉
𝜕𝑋2

+
𝑣𝜉2

2
𝜕2𝑉
𝜕𝑣2

+ 𝑋𝑣𝜉𝜌
𝜕2𝑉
𝜕𝑣𝜕𝑋

+
𝜕𝑉
𝜕𝑋
𝑋(𝑟 − 𝑞) − 𝑟𝑉

𝜕𝑉
𝜕𝑣

≡ 𝜂 

(28) 

In the above equation, the left-hand side is a function of  𝑈 only and the right-hand side is a function of 

𝑉 only. The only way for the equality to hold is for both sides to equal a common function 𝜂 of the 

independent variables 𝑡, 𝑋𝑡 and 𝑣𝑡. 

Now let’s consider a delta-neutral portfolio 𝑌𝑡 by taking long on one share of 𝑈(𝑡, 𝑋𝑡, 𝑣𝑡) and 

short on 𝛥𝑡 shares of 𝑋𝑡 

𝑌𝑡 = 𝑈𝑡 − 𝛥𝑡𝑋𝑡 (29) 

The price dynamics of the portfolio read 

𝑑𝑌 = 𝑑𝑈 − 𝛥𝑑𝑋 − 𝛥𝑋𝑞𝑑𝑡 

= (
𝜕𝑈

𝜕𝑡
+
𝜕𝑈

𝜕𝑋
(𝜇 − 𝑞)𝑋 +

𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝜕𝑈

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
)𝑑𝑡

+ (
𝜕𝑈

𝜕𝑋
− 𝛥)𝑋√𝑣𝑑𝑊1 +

𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊2 − 𝛥(𝜇 − 𝑞)𝑋𝑑𝑡 − 𝛥𝑋𝑞𝑑𝑡 

(30) 

Since delta-neutral implies 𝜕𝑈/𝜕𝑋 − 𝛥 = 0, we are able to derive the dynamics of the discounted 

portfolio, a martingale under risk neutral measure, as 
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𝑑(𝐷𝑡𝑌𝑡)

𝐷𝑡
= 𝑑𝑌 − 𝑟𝑌𝑑𝑡 = 𝑑𝑈 − 𝛥𝑑𝑋 − 𝛥𝑋𝑞𝑑𝑡 − 𝑟𝑈𝑑𝑡 + 𝑟𝛥𝑋𝑑𝑡 

= (
𝜕𝑈

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝜕𝑈

𝜕𝑡
+
𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
+
𝜕𝑈

𝜕𝑋
𝑋(𝑟 − 𝑞) − 𝑟𝑈)𝑑𝑡

+
𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊2 

=
𝜕𝑈

𝜕𝑣
(𝜖(𝜗 − 𝑣) + 𝜂)𝑑𝑡 +

𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊2 =

𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊̃2 

(31) 

by defining 

𝑑𝑊̃2 = 𝑑𝑊2 + 𝜙2𝑑𝑡, 𝜙2 = 
𝜖(𝜗 − 𝑣) + 𝜂

𝜉√𝑣
 (32) 

In the above, the 𝑊̃2 is a Brownian motion under risk neutral measure ℚ and 𝜙2 is the market price of 

volatility risk. 

We next consider a vega-neutral portfolio 𝑍𝑡  by taking long on one share of 𝑈(𝑡, 𝑋𝑡, 𝑣𝑡) and 

short on 𝛤𝑡 shares of 𝑉(𝑡, 𝑋𝑡, 𝑣𝑡) 

𝑍𝑡 = 𝑈𝑡 − 𝛤𝑡𝑉𝑡 (33) 

The dynamics of the portfolio reads 

𝑑𝑍 = 𝑑𝑈 − 𝛤𝑑𝑉 

= (
𝜕𝑈

𝜕𝑡
+
𝜕𝑈

𝜕𝑋
(𝜇 − 𝑞)𝑋 +

𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝜕𝑈

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
)𝑑𝑡 

−𝛤 (
𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑋
(𝜇 − 𝑞)𝑋 +

𝑣𝑋2

2

𝜕2𝑉

𝜕𝑋2
+
𝜕𝑉

𝜕𝑣
𝜖(𝜗 − 𝑣) +

𝑣𝜉2

2

𝜕2𝑉

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑉

𝜕𝑣𝜕𝑋
)𝑑𝑡 

+(
𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑋√𝑣𝑑𝑊1 + (

𝜕𝑈

𝜕𝑣
− 𝛤

𝜕𝑉

𝜕𝑣
) 𝜉√𝑣𝑑𝑊2 

(34) 

Since vega-neutral implies 
𝜕𝑈

𝜕𝑣
− 𝛤

𝜕𝑉

𝜕𝑣
= 0, we can derived the dynamics of the discounted portfolio as  

𝑑(𝐷𝑡𝑍𝑡)

𝐷𝑡
= 𝑑𝑍 − 𝑟𝑍𝑑𝑡 = 𝑑𝑈 − 𝛤𝑑𝑉 − 𝑟𝑈𝑑𝑡 + 𝑟𝛤𝑉𝑑𝑡 (35) 
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= (
𝜕𝑈

𝜕𝑡
+ (𝜇 − 𝑞)𝑋

𝜕𝑈

𝜕𝑋
+
𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
− 𝑟𝑈)𝑑𝑡

− 𝛤 (
𝜕𝑉

𝜕𝑡
+ (𝜇 − 𝑞)𝑋

𝜕𝑉

𝜕𝑋
+
𝑣𝑋2

2

𝜕2𝑉

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑉

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑉

𝜕𝑣𝜕𝑋
− 𝑟𝑉)𝑑𝑡

+ (
𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑋√𝑣𝑑𝑊1 

= (
𝜕𝑈

𝜕𝑡
+
𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
− 𝑟𝑈)𝑑𝑡

− 𝛤 (
𝜕𝑉

𝜕𝑡
+
𝑣𝑋2

2

𝜕2𝑉

𝜕𝑋2
+
𝑣𝜉2

2

𝜕2𝑉

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑉

𝜕𝑣𝜕𝑋
− 𝑟𝑉)𝑑𝑡 + (

𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑑𝑋 

= (𝜂
𝜕𝑈

𝜕𝑣
− 𝑋(𝑟 − 𝑞)

𝜕𝑈

𝜕𝑋
− 𝛤𝜂

𝜕𝑉

𝜕𝑣
+ 𝛤𝑋(𝑟 − 𝑞)

𝜕𝑉

𝜕𝑋
)𝑑𝑡 + (

𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑑𝑋 

= (
𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
) (𝑑𝑋 − 𝑋(𝑟 − 𝑞)𝑑𝑡) = (

𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑋 ((𝜇 − 𝑟)𝑑𝑡 + √𝑣𝑑𝑊1) 

= (
𝜕𝑈

𝜕𝑋
− 𝛤

𝜕𝑉

𝜕𝑋
)𝑋√𝑣𝑑𝑊̃1 

by defining 

𝑑𝑊̃1 = 𝑑𝑊1 + 𝜙1𝑑𝑡, 𝜙1 = 
𝜇 − 𝑟

√𝑣
 (36) 

where 𝑑𝑊̃1 is a Brownian motion under risk neutral measure ℚ and 𝜙1 is the market price of spot risk.  

According to (32) and (36), the Heston SDE (21) under risk neutral measure takes the form  

𝑑𝑋𝑡
𝑋𝑡

= (𝜇 − 𝑞)𝑑𝑡 + √𝑣𝑡(𝑑𝑊̃1,𝑡 − 𝜙1𝑑𝑡) = (𝑟 − 𝑞)𝑑𝑡 + √𝑣𝑡𝑑𝑊̃1,𝑡 

𝑑𝑣𝑡 =  𝜖(𝜗 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡(𝑑𝑊̃2,𝑡 − 𝜙2𝑑𝑡) =  (𝜖(𝜗 − 𝑣𝑡) − 𝜙2𝜉√𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊̃2,𝑡 

(37) 

Based on the Consumption-based Capital Asset Pricing Model, Heston [24] assumes that the market 

price of volatility risk is proportional to volatility, that is 

𝜙2 = 𝑐√𝑣    for a constant  𝑐    ⟹     𝜙2𝜉√𝑣 =  𝑐𝜉𝑣 = 𝜆𝑣    where    𝜆 = 𝑐𝜉 (38) 

If we define  
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𝜅 = 𝜖 + 𝜆, 𝜃 =
𝜖𝜗

𝜅
 (39) 

the Heston SDE under risk neutral measure ℚ reads 

𝑑𝑋𝑡
𝑋𝑡

= (𝑟 − 𝑞)𝑑𝑡 + √𝑣𝑡𝑑𝑊̃1,𝑡, 𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊̃2,𝑡, 𝑑𝑊̃1,𝑡𝑑𝑊̃2,𝑡 = 𝜌𝑑𝑡 (40) 

which retains the form of the equation under the transformation from the physical measure ℙ to the risk 

neutral measure ℚ. 

Since the volatility is not a traded asset, the incompleteness of the market implies the risk neutral 

measure is not unique and depends on the value of the market price of volatility risk 𝜙2. To estimate the 

model parameters, one may calibrate the Heston’s model using historical spot data, however the 

historical calibration does not allow for the estimation of 𝜙2. Instead of using the spot data, one may 

also calibrate the model to the volatility smile (i.e. prices of vanilla options). In this case, the market 

price of volatility risk has already been implied in the market smile, and consequently embedded into the 

calibrated model parameters 𝜅 and 𝜃 through (39). 

2.1.2. Radon-Nikodym Derivative 

The change of measure from ℙ to ℚ is achieved through Radon-Nikodym derivative via multi-

dimensional Girsanov’s theorem [2]. To derive this derivative, we may write correlated 𝑛-dimensional 

Brownian motions as 𝑑𝑊𝑡 and 𝑑𝑊̃𝑡 under physical measure ℙ and risk neutral measure ℚ respectively. 

The matrix 𝜌 denotes the instantaneous correlation, e.g. 𝑑𝑊𝑡𝑑𝑊𝑡
′ = 𝜌𝑑𝑡. It should be noted that 𝑑𝑊𝑡 

and 𝑑𝑊̃𝑡 possess the same correlation structure only if each is under its own probability measure, ℙ or 

ℚ, otherwise this property does not hold. From (32) and (36), we represent the market price of risk by 

correlation matrix an 𝑛-dimensional vector 𝜙 such that 

𝑑𝑊̃𝑡 = 𝑑𝑊𝑡 + 𝜌𝜙𝑡𝑑𝑡 (41) 

The Radon-Nikodym derivative is then given for 𝑡 > 𝑠 by 

𝑑ℚ

𝑑ℙ
= exp(−

1

2
∫ 𝜙𝑢

′ 𝜌𝜙𝑢𝑑𝑢
𝑡

𝑠

−∫ 𝜙𝑢
′ 𝑑𝑊𝑢

𝑡

𝑠

) (42) 
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To check this, let’s assume under ℚ we have a martingale process 

𝐿𝑡 = 𝐿𝑠 exp (−
1

2
∫ 𝜎𝑢

′𝜌𝜎𝑢𝑑𝑢
𝑡

𝑠

+∫ 𝜎𝑢
′𝑑𝑊̃𝑢

𝑡

𝑠

) (43) 

where 𝜎𝑢is a vector representing an adapted volatility process.  According to (41) we have 

𝐿𝑡 = 𝐿𝑠 exp (−
1

2
∫ 𝜎𝑢

′𝜌𝜎𝑢𝑑𝑢
𝑡

𝑠

+∫ 𝜎𝑢
′𝑑𝑊𝑢

𝑡

𝑠

+∫ 𝜎𝑢
′𝜌𝜙𝑢𝑑𝑢

𝑡

𝑠

)         and 

𝐿𝑡
𝑑ℚ

𝑑ℙ
= 𝐿𝑠 exp (−

1

2
∫ 𝜎𝑢

′𝜌𝜎𝑢𝑑𝑢
𝑡

𝑠

+∫ 𝜎𝑢
′𝜌𝜙𝑢𝑑𝑢

𝑡

𝑠

−
1

2
∫ 𝜙𝑢

′ 𝜌𝜙𝑢𝑑𝑢
𝑡

𝑠

+∫ (𝜎𝑢 − 𝜙𝑢)
′𝑑𝑊𝑢

𝑡

𝑠

) 

= 𝐿𝑠 exp (−
1

2
∫ (𝜎𝑢 − 𝜙𝑢)

′𝜌(𝜎𝑢 − 𝜙𝑢)𝑑𝑢
𝑡

𝑠

+∫ (𝜎𝑢 − 𝜙𝑢)
′𝑑𝑊𝑢

𝑡

𝑠

) 

(44) 

The 𝐿𝑡
𝑑ℚ

𝑑ℙ
 is a martingale under ℙ. Hence we have the following equation 

𝔼̃𝑠[𝐿𝑡] = 𝔼𝑠 [𝐿𝑡
𝑑ℚ

𝑑ℙ
] = 𝐿𝑠 (45) 

as expected.  

2.1.3. Feller Condition 

 The variance process 𝑣𝑡  in (40) is known as Cox-Ingersoll-Ross (CIR) process [ 3 ]. The 

distribution of future values of a CIR process can be computed in closed form 

𝑣𝑡+𝜏 =
𝑌

2𝑐
, 𝑐 =

2𝜅

(1 − 𝑒−𝜅𝜏)𝜉2
, 𝑌~𝜒2 (

4𝜅𝜃

𝜉2
, 2𝑐𝑣𝑡𝑒

−𝜅𝜏) (46) 

Where 𝑌 is a non-central Chi-Squared distribution with 4𝜅𝜃/𝜉2 degrees of freedom and non-centrality 

parameter 2𝑐𝑣𝑡𝑒
−𝜅𝜏. Integration of 𝑣𝑡 process gives its conditional mean and variance as 

𝔼[𝑣𝑡+𝜏|𝑣𝑡] = 𝜃 + (𝑣𝑡 − 𝜃)𝑒
−𝜅𝜏, 𝕍[𝑣𝑡+𝜏|𝑣𝑡] =

𝑣𝑡𝜉
2

𝜅
(𝑒−𝜅𝜏 − 𝑒−2𝜅𝜏) +

𝜃𝜉2

2𝜅
(1 − 𝑒−𝜅𝜏)2 (47) 

It can be seen that the long term mean for 𝑣𝑡+𝜏 is 𝜃, i.e. the mean reversion level. 

Feller observed that the variance process 𝑣𝑡 remains strictly positive with probability 1 for all 

times 𝑡 > 𝑠, if 𝑣𝑠 > 0 and the Feller condition [4] [5] is satisfied 
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2𝜅𝜃 ≥ 𝜉2 (48) 

If the condition is not satisfied, i.e. 0 < 2𝜅𝜃 < 𝜉2, the variance will visit zero recurrently but will not 

stay at zero, i.e. the zero boundary is strongly reflecting. In typical applications, the Feller condition is 

often violated due to the convexities of volatility smiles typically encountered in practice. Indeed the 

process 𝑣𝑡 often has a strong affinity for the area around the origin. However, this is not a complete 

disaster, as the process 𝑣𝑡 can only hit zero for an infinitesimally small amount of time. 

2.2. Probability Distribution of Spot Returns 

In this section, we present a derivation of the distribution of the spot returns in Heston’s model 

[6]. Let’s firstly make a change of variable to have a centered log-spot for 𝑡 > 𝑠 

𝑥𝑡 = ln
𝑋𝑡
𝐹𝑠,𝑡

, 𝐹𝑠,𝑡 = 𝑋𝑠
𝐵̂𝑠,𝑡
𝐵𝑠,𝑡

, 𝐵𝑠,𝑡 = exp(−∫ 𝑟𝑢𝑑𝑢
𝑡

𝑠

) , 𝐵̂𝑠,𝑡 = exp (−∫ 𝑞𝑢𝑑𝑢
𝑡

𝑠

) (49) 

The Heston’s model (40) under ℚ can then take the following form by Ito’s lemma  

𝑑𝑥𝑡 = −
𝑣𝑡
2
𝑑𝑡 + √𝑣𝑡𝑑𝑊̃1,𝑡, 𝑑𝑣𝑡 =  𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊̃2,𝑡, 𝑑𝑊̃1,𝑡𝑑𝑊̃2,𝑡 = 𝜌𝑑𝑡 (50) 

This defines a 2-D stochastic process characterized by a joint transition probability density function 

𝑝(𝑡, 𝑥𝑡, 𝑣𝑡|𝑠, 𝑥𝑠, 𝑣𝑠), which is the probability having log-spot 𝑥𝑡 and instantaneous variance 𝑣𝑡 at time 𝑡, 

conditional on 𝑥𝑠 and 𝑣𝑠 at outset 𝑠.  

2.2.1. Derivation of the Transition Probability 

We may rewrite (50) in terms of a 2-D Brownian motion 𝑑𝑊̃𝑡 

𝑑𝑍𝑡 = 𝐴𝑡𝑑𝑡 + 𝐶𝑡𝑑𝑊̃𝑡        with 

𝑍𝑡 = (
𝑥𝑡
𝑣𝑡
) , 𝐴𝑡 = (

−𝑣𝑡/2

𝜅(𝜃 − 𝑣𝑡)
) , 𝐶𝑡 = (

√𝑣𝑡 0

0 𝜉√𝑣𝑡
) , 𝑑𝑊̃𝑡𝑑𝑊̃𝑡

′ = (
1 𝜌
𝜌 1

)𝑑𝑡 
(51) 

The instantaneous covariance matrix of 𝑑𝑍𝑡 becomes 

𝛴𝑡 = 𝐶𝑡 (
1 𝜌
𝜌 1

)𝐶𝑡 = (
𝑣𝑡 𝜌𝜉𝑣𝑡
𝜌𝜉𝑣𝑡 𝜉2𝑣𝑡

) (52) 
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The 2-D Markov process is characterized by the transition probability 𝑝𝑡,𝑥,𝑣 = 𝑝(𝑡, 𝑥𝑡 , 𝑣𝑡|𝑠, 𝑥𝑠 , 𝑣𝑠). The 

Fokker-Planck equation that governs the time evolution of the transition probability is given by (10) 

𝜕𝑝

𝜕𝑡
−
1

2

𝜕(𝑣𝑝)

𝜕𝑥
+
𝜕(𝜅(𝜃 − 𝑣)𝑝)

𝜕𝑣
−
1

2

𝜕2(𝑣𝑝)

𝜕𝑥2
− 𝜌𝜉

𝜕2(𝑣𝑝)

𝜕𝑥𝜕𝑣
−
𝜉2

2

𝜕2(𝑣𝑝)

𝜕𝑣2
= 0 

𝜕𝑝

𝜕𝑡
−
𝑣

2

𝜕𝑝

𝜕𝑥
+ 𝜅(𝜃 − 𝑣)

𝜕𝑝

𝜕𝑣
−
𝑣

2

𝜕2𝑝

𝜕𝑥2
− 𝜌𝜉

𝜕2(𝑣𝑝)

𝜕𝑥𝜕𝑣
−
𝜉2

2

𝜕2(𝑣𝑝)

𝜕𝑣2
= 0 

𝜕2(𝑣𝑝)

𝜕𝑥𝜕𝑣
=
𝜕

𝜕𝑥

𝜕(𝑣𝑝)

𝜕𝑣
=
𝜕

𝜕𝑥
(𝑝 + 𝑣

𝜕𝑝

𝜕𝑣
) =

𝜕𝑝

𝜕𝑥
+ 𝑣

𝜕2𝑝

𝜕𝑥𝜕𝑣
 

(53) 

with initial condition 𝑝𝑠,𝑥,𝑣 = 𝛿𝑥−𝑥𝑠𝛿𝑣−𝑣𝑠 = 𝛿𝑥𝛿𝑣−𝑣𝑠, where 𝛿 is the Dirac delta function. The marginal 

probability density of the variance alone 

𝜁𝑡,𝑣 = ∫𝑝𝑡,𝑥,𝑣𝑑𝑥
ℝ

 (54) 

satisfies the following Fokker-Planck equation obtained from (53) by integration over 𝑥 

𝜕𝜁

𝜕𝑡
=
𝜕(𝜅(𝑣 − 𝜃)𝜁)

𝜕𝑣
+
𝜉2

2

𝜕2(𝑣𝜁)

𝜕𝑣2
 (55) 

Feller has shown that this equation is well defined on the interval 𝑣 ∈ [0, +∞)  as long as 𝜃 > 0 . 

Equation (55) has a stationary solution, which is a Gamma distribution 

𝜁𝑣
∗  =

𝛼𝛼

𝛤(𝛼)

𝑣𝛼−1

𝜃𝛼
exp (−

𝛼𝑣

𝜃
)       and      𝛼 =

2𝜅𝜃

𝜉2
 (56) 

Since 𝑥  appears in (53) only in the derivative operator, it is convenient to take the Fourier 

transform, such that 

𝑝̂𝑡,𝜔,𝑣 = ∫𝑒
−𝑖𝜔𝑥𝑝𝑡,𝑥,𝑣𝑑𝑥

ℝ

      and      𝑝𝑡,𝑥,𝑣 =
1

2𝜋
∫𝑒𝑖𝜔𝑥𝑝̂𝑡,𝜔,𝑣𝑑𝜔
ℝ

 (57) 

Inserting (57) into (53), we have 

𝜕𝑝̂

𝜕𝑡
=
𝜕(𝜅(𝑣 − 𝜃)𝑝̂)

𝜕𝑣
+
𝑖𝜔 − 𝜔2

2
𝑣𝑝̂ + 𝑖𝜌𝜉𝜔

𝜕(𝑣𝑝̂)

𝜕𝑣
+
𝜉2

2

𝜕2(𝑣𝑝̂)

𝜕𝑣2
 (58) 

Since (58) is linear in 𝑣 and quadratic in 𝜕/𝜕𝑣, by taking Laplace transform over 𝑣, it simplifies to 
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𝑝𝑡,𝜔,𝜆 = ∫ 𝑒−𝜆𝑣𝑝̂𝑡,𝜔,𝑣𝑑𝑣
ℝ+

 (59) 

The PDE satisfied by 𝑝𝑡,𝜔,𝜆 is of the first order 

𝜕𝑝

𝜕𝑡
= (

𝜔2 − 𝜉2𝜆2 − 𝑖𝜔

2
− 𝛾𝜆)

𝜕𝑝

𝜕𝜆
− 𝜅𝜃𝜆𝑝 (60) 

with initial condition 𝑝𝑠,𝜔,𝜆 = exp(−𝜆𝑣𝑠), where 𝛾 = 𝜅 + 𝑖𝜌𝜉𝜔. The solution of this PDE is given by 

the method of characteristics 

𝑝𝑡,𝜔,𝜆 = exp(−𝜆̃𝑠𝑣𝑠 − 𝜅𝜃∫ 𝜆̃𝑢𝑑𝑢
𝑡

𝑠

) (61) 

where the function 𝜆̃𝑡 is the solution of the characteristic (ordinary) differential equation 

𝑑𝜆̃𝑢
𝑑𝑢

= 𝛾𝜆̃𝑢 +
𝜉2

2
𝜆̃𝑢
2 −

𝜔2 − 𝑖𝜔

2
 (62) 

With a boundary condition 𝜆̃𝑡 = 𝜆  specified at time 𝑡 , the (62) is a Riccati equation with constant 

coefficients and its solution is 

𝜆̃𝑢 =
2Ω

𝜉2
1

𝛹𝑒Ω(𝑡−𝑢) − 1
−
𝛾 − Ω

𝜉2
    with    Ω = √𝛾2 + 𝜉2(𝜔2 − 𝑖𝜔), 𝛹 = 1 +

2Ω

𝜉2𝜆 + 𝛾 − Ω
 (63) 

Plugging (63) into (61), we have 

𝑝𝑡,𝜔,𝜆 = exp(−𝜆̃𝑠𝑣𝑠 +
𝜅𝜃(𝛾 − Ω)𝑡

𝜉2
−
2𝜅𝜃

𝜉2
ln
𝛹 − 𝑒−Ω𝑡

𝛹 − 1
 ) (64) 

Normally we are interested only in distribution of log-spot 𝑥𝑡 and do not care about variance 𝑣𝑡. 

Therefore we derive the marginal probability density for 𝑥𝑡 with 𝜆 = 0 

𝑝𝑡,𝑥 = ∫ 𝑝𝑡,𝑥,𝑣𝑑𝑣
ℝ+

 

=
1

2𝜋
∫ ∫𝑒𝑖𝜔𝑥𝑝̂𝑡,𝜔,𝑣𝑑𝜔

ℝ

𝑑𝑣
ℝ+

=
1

2𝜋
∫ 𝑒𝑖𝜔𝑥∫ 𝑝̂𝑡,𝜔,𝑣𝑑𝑣

ℝ+
𝑑𝜔

ℝ

=
1

2𝜋
∫𝑒𝑖𝜔𝑥𝑝̃𝑡,𝜔,𝜆=0𝑑𝜔
ℝ

 

=
1

2𝜋
∫ exp(𝑖𝜔𝑥 −

𝜔2 − 𝑖𝜔

𝛾 + Ωcoth
Ω𝑡
2

𝑣𝑠 +
𝜅𝜃𝛾𝑡

𝜉2
−
2𝜅𝜃

𝜉2
ln (cosh

Ω𝑡

2
+
𝛾

Ω
sinh

Ω𝑡

2
) ) 𝑑𝜔

ℝ

 

(65) 
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where the last step comes from substitution of 𝑝̂𝑡,𝜔,𝜆=0 in (61) into (57). The derived density function 

𝑝𝑡,𝑥 = 𝑝(𝑡, 𝑥|𝑠, 𝑥𝑠, 𝑣𝑠) in (65) is still dependent on the unknown initial variance 𝑣𝑠 . To remove the 

dependence, the 𝑣𝑠  is assumed to have the stationary distribution density as in (56). Thus the 

unconditional transition density function 𝑓𝑡,𝑥, is derived by averaging (65) over 𝑣𝑠 with the weight 𝜁∗ 

𝑓𝑡,𝑥 = ∫ 𝑝(𝑡, 𝑥|𝑠, 𝑥𝑠, 𝑣)𝜁𝑣
∗𝑑𝑣

ℝ+
 (66) 

The integral over 𝑣𝑠 is similar to the one of the Gamma function and can be taken explicitly. The final 

result is the Fourier integral 

𝑓𝑡,𝑥 =
1

2𝜋
∫𝑒𝑖𝜔𝑥+𝐹𝑡,𝜔𝑑𝜔
ℝ

, 𝐹𝑡,𝜔 =
𝜅𝜃𝛾𝑡

𝜉2
−
2𝜅𝜃

𝜉2
ln (cosh

Ω𝑡

2
+
Ω2 − 𝛾2 + 2𝜅𝛾

2𝜅Ω
sinh

Ω𝑡

2
) (67) 

It is easy to check that 𝑓𝑡,𝑥  is real, because ℜ[𝐹𝑡,𝜔] is an even function of 𝜔 and ℑ[𝐹𝑡,𝜔] is an odd 

function. One can also check that 𝐹𝑡,𝜔=0 = 0, which implies that 𝑓𝑡,𝑥 is correctly normalized at all times. 

2.2.2. Moment Generating Function (in progress…) 

We can integrate (50) over time from 𝑠 to 𝑡 to get 

𝑥𝑡 = 𝑥𝑠 −
1

2
∫ 𝑣𝑢𝑑𝑢
𝑡

𝑠

+∫ √𝑣𝑢𝑑𝑊̃1,𝑢

𝑡

𝑠

, 𝑣𝑡 = 𝑣𝑠 + 𝜅𝜃𝜏 − 𝜅∫ 𝑣𝑢𝑑𝑢
𝑡

𝑠

+ 𝜉∫ √𝑣𝑢𝑑𝑊̃2,𝑢

𝑡

𝑠

 (68) 

where 𝜏 = 𝑡 − 𝑠 and 𝑑𝑊̃1,𝑡 = 𝜌𝑑𝑊̃2,𝑡 + 𝜂𝑑𝐵̃𝑡  for 𝜂 = √1 − 𝜌2  and the Brownian motion 𝑑𝐵̃𝑡  is 

independent of 𝑑𝑊̃2,𝑡. Defining a function ℎ𝑡;𝛼,𝛽 such that 

ℎ𝑡;𝛼,𝛽: = 𝔼̃𝑠[exp(𝛼𝑥𝑡 + 𝛽𝑣𝑡)] = 𝔼̃𝑠 [exp (𝛼𝑥𝑡 + (𝛽 +
𝛼𝜌

𝜉
)𝑣𝑡 −

𝛼𝜌

𝜉
𝑣𝑡)] 

= 𝔼̃𝑠 [exp (𝛼𝑥𝑠 − 𝛼𝜌
𝑣𝑠 + 𝜅𝜃𝜏

𝜉
+ (𝛽 +

𝛼𝜌

𝜉
)𝑣𝑡 + (

𝛼𝜌𝜅

𝜉
−
𝛼

2
)∫ 𝑣𝑢𝑑𝑢

𝑡

𝑠

+ 𝛼𝜂∫ √𝑣𝑢𝑑𝐵̃𝑢

𝑡

𝑠

)] 

= exp (𝛼𝑥𝑠 − 𝛼𝜌
𝑣𝑠 + 𝜅𝜃𝜏

𝜉
) 𝔼̃𝑠 [exp((𝛽 +

𝛼𝜌

𝜉
)𝑣𝑡 + (

𝛼𝜌𝜅

𝜉
−
𝛼

2
)∫ 𝑣𝑢𝑑𝑢

𝑡

𝑠

+ 𝛼𝜂∫ √𝑣𝑢𝑑𝐵̃𝑢

𝑡

𝑠

)] 

= 𝑒
𝛼𝑥𝑠−𝛼𝜌

𝑣𝑠+𝜅𝜃𝜏
𝜉 𝔼̃𝑠 [𝑒

(𝛽+
𝛼𝜌
𝜉
)𝑣𝑡+(

𝛼𝜌𝜅
𝜉
−
𝛼
2
)∫ 𝑣𝑢𝑑𝑢

𝑡
𝑠 𝔼̃𝑠 [𝑒

𝛼𝜂 ∫ √𝑣𝑢𝑑𝐵̃𝑢
𝑡
𝑠 ]]    (𝑣𝑡  is independent of 𝐵̃𝑡) 

(69) 
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= exp (𝛼𝑥𝑠 − 𝛼𝜌
𝑣𝑠 + 𝜅𝜃𝜏

𝜉
) 𝔼̃𝑠 [exp((𝛽 +

𝛼𝜌

𝜉
)𝑣𝑡 + (

𝛼𝜌𝜅

𝜉
−
𝛼

2
+
𝛼2𝜂2

2
)∫ 𝑣𝑢𝑑𝑢

𝑡

𝑠

)] 

we can derive the differential of exp(𝛼𝑥𝑡 + 𝛽𝑣𝑡) as 

𝑑(𝑒𝛼𝑥𝑡+𝛽𝑣𝑡) = 𝑒𝛼𝑥𝑡+𝛽𝑣𝑡 (𝑑(𝛼𝑥𝑡 + 𝛽𝑣𝑡) +
1

2
𝑑(𝛼𝑥𝑡 + 𝛽𝑣𝑡)𝑑(𝛼𝑥𝑡 + 𝛽𝑣𝑡)) 

= 𝑒𝛼𝑥𝑡+𝛽𝑣𝑡 ((−
𝛼

2
+
𝛼2

2
+
𝛽2𝜉2

2
+ 𝛼𝛽𝜉𝜌 − 𝛽𝜅)𝑣𝑡𝑑𝑡 + 𝛽𝜅𝜃𝑑𝑡 + 𝛼√𝑣𝑡𝑑𝑊̃1,𝑡 + 𝛽𝜉√𝑣𝑡𝑑𝑊̃2,𝑡) 

(70) 

Integrating both sides gives 

𝑒𝛼𝑥𝑡+𝛽𝑣𝑡 = 𝑒𝛼𝑥𝑠+𝛽𝑣𝑠 + (−
𝛼

2
+
𝛼2

2
+
𝛽2𝜉2

2
+ 𝛼𝛽𝜉𝜌 − 𝛽𝜅)∫ 𝑒𝛼𝑥𝑢+𝛽𝑣𝑢𝑣𝑢𝑑𝑢

𝑡

𝑠

+ 𝛽𝜅𝜃∫ 𝑒𝛼𝑥𝑢+𝛽𝑣𝑢𝑑𝑢
𝑡

𝑠

+ 𝛼∫ 𝑒𝛼𝑥𝑢+𝛽𝑣𝑢√𝑣𝑢𝑑𝑊̃1,𝑢

𝑡

𝑠

+ 𝛽𝜉∫ 𝑒𝛼𝑥𝑢+𝛽𝑣𝑢√𝑣𝑢𝑑𝑊̃2,𝑢

𝑡

𝑠

 

(71) 

Taking expectation, we find 

ℎ𝑡;𝛼,𝛽 = 𝑒
𝛼𝑥𝑠+𝛽𝑣𝑠 + (−

𝛼

2
+
𝛼2

2
+
𝛽2𝜉2

2
+ 𝛼𝛽𝜉𝜌 − 𝛽𝜅)∫ 𝔼̃𝑠[𝑣𝑢𝑒

𝛼𝑥𝑢+𝛽𝑣𝑢]𝑑𝑢
𝑡

𝑠

+ 𝛽𝜅𝜃∫ ℎ𝑢;𝛼,𝛽𝑑𝑢
𝑡

𝑠

 

⟹ ℎ𝑡;𝛼,𝛽 = ℎ𝑠;𝛼,𝛽 + (−
𝛼

2
+
𝛼2

2
+
𝛽2𝜉2

2
+ 𝛼𝛽𝜉𝜌 − 𝛽𝜅)

⏟                      
𝑝𝛼,𝛽

∫
𝜕ℎ𝑢;𝛼,𝛽

𝜕𝛽
𝑑𝑢

𝑡

𝑠

+ 𝛽𝜅𝜃∫ ℎ𝑢;𝛼,𝛽𝑑𝑢
𝑡

𝑠

 

(72) 

Differentiating with respect to 𝑡, we have the PDE 

𝜕ℎ𝑡;𝛼,𝛽

𝜕𝑡
− 𝑝𝛼,𝛽

𝜕ℎ𝑡;𝛼,𝛽

𝜕𝛽
= 𝛽𝜅𝜃ℎ𝑡;𝛼,𝛽 (73) 

(To be continued, reference [7]) 

2.3. Analytical Solution of Vanilla Options 

Vanilla option price in Heston model can be computed semi-analytically. Shortly we will see that 

the spot process in Heston model admits a closed-form characteristic function, which allows us to 
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express the option prices in terms of Fourier-inversion integrals that can be evaluated numerically (e.g. 

using quadrature).  

2.3.1. Fourier Transform  

In textbooks, Fourier transform and its inverse (in 𝑛-dimensional case) are often depicted as 

Forward Transform:    𝑓𝜉 = ∫ 𝑒−2𝜋𝑖𝜉
′𝑥𝑓𝑥𝑑𝑥

ℝ𝑛
    ∀  𝜔 ∈ ℝ𝑛 

Inverse Transform:    𝑓𝑥 = ∫ 𝑒2𝜋𝑖𝜉
′𝑥𝑓𝜉𝑑𝜉

ℝ𝑛
    ∀  𝑥 ∈ ℝ𝑛 

(74) 

where 𝑓:ℝ𝑛 ⟼ ℂ and 𝑓:ℝ𝑛 ⟼ ℂ are integrable functions, and 𝜉 is the ordinary frequency measured in 

hertz. This convention defines a unitary transformation on 𝐿2(ℝ𝑛) (i.e. the inner product is preserved 

before and after the transformation). The transform is equivalent to writing a periodic function 𝑓𝑥 in 

Fourier series expansion within an interval of 𝑇 = 1/ℎ for ℎ > 0. In 1D, this reads 

𝑓𝑥 =∑
𝑐𝑘
𝑇
𝑒2𝜋𝑖𝑘

𝑥
𝑇

𝑘∈ℤ

= ℎ∑𝑐𝑘𝑒
2𝜋𝑖ℎ𝑘𝑥

𝑘∈ℤ

    and    𝑐𝑘 = ∫ 𝑓𝑥𝑒
−2𝜋𝑖𝑘

𝑥
𝑇𝑑𝑥

𝑇/2

−𝑇/2 

= ∫ 𝑓𝑥𝑒
−2𝜋𝑖ℎ𝑘𝑥𝑑𝑥

1/2ℎ

−1/2ℎ 

 (75) 

Letting 𝜉 = ℎ𝑘 and taking the limit ℎ → 0+, we have 

lim
ℎ→0+

𝑐𝑘 = lim
ℎ→0+

∫ 𝑓𝑥𝑒
−2𝜋𝑖ℎ𝑘𝑥𝑑𝑥

1/2ℎ

−1/2ℎ 

= ∫ 𝑓𝑥𝑒
−2𝜋𝑖𝜉𝑥𝑑𝑥

ℝ 

= 𝑓𝜉         and 

𝑓𝑥 = lim
ℎ→0+

ℎ∑𝑐𝑘𝑒
2𝜋𝑖ℎ𝑘𝑥

𝑘∈ℤ

= ∫ 𝑓𝜉𝑒
2𝜋𝑖𝜉𝑥𝑑𝜉

ℝ 

 

(76) 

The sum over all the integers in the above equation can be regarded as an approximating Riemann sum 

for the integral [8]. 

There is no standard definition of a Fourier transform and its inverse. All the definitions are 

mutually equivalent. The one that we use for characteristic functions follows an angular frequency 

convention and appears less symmetric, which is defined as follows  

Forward:    𝑓𝜔 = ∫ 𝑒𝑖𝜔
′𝑥𝑓𝑥𝑑𝑥

ℝ𝑛
    ∀  𝜔 ∈ ℝ𝑛 (77) 
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Inverse:    𝑓𝑥 =
1

(2𝜋)𝑛
∫ 𝑒−𝑖𝜔

′𝑥𝑓𝜔𝑑𝜔
ℝ𝑛

    ∀  𝑥 ∈ ℝ𝑛 

where the 𝜔 is the angular frequency measured in radians per second (e.g. 𝜔 = 2𝜋𝜉) and the (′) denotes 

matrix transpose (and hence the 𝜔′𝑥 denotes a dot product of two column vectors 𝜔 and 𝑥). The extra 

term 1/(2𝜋)𝑛 is introduced due to the change of variable 𝜔 = 2𝜋𝜉 from ordinary frequency to angular 

frequency. In fact the normalization factors multiplying the forward and inverse transforms (here 1 and 

1/(2𝜋)𝑛, respectively) and the signs of the exponents are merely conventions and differ in treatments. 

The only requirements for these conventions are: 1) the forward and inverse transforms have opposite-

sign exponents, and 2) the product of their normalization factors is 1/(2𝜋)𝑛. In 1D, the (77) reduces to  

Forward:    𝑓𝜔 = ∫𝑒
𝑖𝜔𝑥𝑓𝑥𝑑𝑥

ℝ

    ∀  𝜔 ∈ ℝ 

Inverse:    𝑓𝑥 =
1

2𝜋
∫𝑒−𝑖𝜔𝑥𝑓𝜔𝑑𝜔
ℝ

    ∀  𝑥 ∈ ℝ 

(78) 

2.3.2. Levy’s Inversion Formula 

Characteristic function 𝜙𝜔  of any random variable 𝑋  completely defines its probability 

distribution. On the real line, the characteristic function is given by the formula 

𝜙𝜔 ≡ 𝔼[𝑒
𝑖𝜔𝑋] = ∫𝑒𝑖𝜔𝑥𝑝𝑥𝑑𝑥

ℝ

= ∫𝑒𝑖𝜔𝑥𝑑𝑃𝑥
Ω

    ∀ 𝜔 ∈ ℝ (79) 

where the 𝑝𝑥 denotes the probability density function (PDF) and the 𝑃𝑥 = ∫ 𝑝𝑦𝑑𝑦
𝑥

−∞
 is the cumulative 

density function (CDF). The characteristic function is merely a Fourier transform of the PDF 𝑝𝑥 , 

likewise the 𝑝𝑥 can be recovered from 𝜙𝜔 through the inverse Fourier transform [9] 

𝑝𝑥 =
1

2𝜋
∫𝑒−𝑖𝜔𝑥𝜙𝜔𝑑𝜔
ℝ

        ∀ 𝜔 ∈ ℝ (80) 

Furthermore, we may compute the CDF 𝑃𝑥 from 𝜙𝜔 through Levy’s Inversion Formula [10] [11] [12] 

shown below 

𝑃𝑥 =
𝜙0
2
+
1

2𝜋
∫

𝑒𝑖𝜔𝑥𝜙−𝜔 − 𝑒
−𝑖𝜔𝑥𝜙𝜔

𝑖𝜔
𝑑𝜔

ℝ+ 

 (81) 
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where 𝜙0 = 1 if 𝜙𝜔 is a characteristic function of a random variable. Before proving the formula, we 

need to find Fourier transform of signum function 𝒮𝑥, which is defined as  

𝒮𝑥 = {
−1 if  𝑥 < 0
1 if  𝑥 > 0

 (82) 

Its transform cannot be obtained via direct integration. However we can consider an odd two-sided 

exponential function 𝒮𝑥
ℎ with ℎ > 0 

𝒮𝑥
ℎ = {−𝑒

ℎ𝑥 if  𝑥 < 0
𝑒−ℎ𝑥 if  𝑥 > 0

 (83) 

The 𝒮̂𝜔
ℎ , i.e. the Fourier transform of 𝒮𝑥

ℎ, can then be derived as 

𝒮̂𝜔
ℎ = ∫𝑒𝑖𝜔𝑥𝒮𝑥

ℎ𝑑𝑥
ℝ

= −∫ 𝑒(𝑖𝜔+ℎ)𝑥𝑑𝑥
ℝ−

+∫ 𝑒(𝑖𝜔−ℎ)𝑥𝑑𝑥
ℝ+

 

= −
𝑒(𝑖𝜔+ℎ)𝑥

𝑖𝜔 + ℎ
|
𝑥=−∞

0

+
𝑒(𝑖𝜔−ℎ)𝑥

𝑖𝜔 − ℎ
|
𝑥=0

∞

= −
1

𝑖𝜔 + ℎ
−

1

𝑖𝜔 − ℎ
=

2𝑖𝜔

𝜔2 + ℎ2
 

(84) 

The parameter ℎ  controls how rapidly the exponential function decays. As ℎ → 0 , the exponential 

function resembles more and more closely the signum function. This suggests that  

𝒮̂𝜔 = lim
ℎ→0

𝒮̂𝜔
ℎ = lim

ℎ→0

2𝑖𝜔

𝜔2 + ℎ2
= −

2

𝑖𝜔
 (85) 

Hence the inverse transform of the 𝒮̂𝜔 gives   

𝒮𝑥 =
1

2𝜋
∫𝑒−𝑖𝜔𝑥𝒮̂𝜔𝑑𝜔
ℝ

= −
1

𝜋
∫
𝑒−𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ

= −
1

𝜋
∫
cos𝜔𝑥 − 𝑖 sin𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ

 

= −
1

𝑖𝜋
∫
cos𝜔𝑥

𝜔
𝑑𝜔

ℝ⏟          
=0,   (odd function)

+
1

𝜋
∫
sin𝜔𝑥

𝜔
𝑑𝜔

ℝ

=
2

𝜋
∫

sin𝜔𝑥

𝜔
𝑑𝜔

ℝ+ 

 

(86) 

With the help of the signum function 𝒮𝑥 in (86), the proof of (81) is given as follows 

∫
𝑒𝑖𝜔𝑥𝜙−𝜔 − 𝑒

−𝑖𝜔𝑥𝜙𝜔
𝑖𝜔

𝑑𝜔
ℝ+ 

= ∫
𝑒𝑖𝜔𝑥 ∫ 𝑒−𝑖𝜔𝑦𝑝𝑦𝑑𝑦ℝ

− 𝑒−𝑖𝜔𝑥 ∫ 𝑒𝑖𝜔𝑦𝑝𝑦𝑑𝑦ℝ

𝑖𝜔
𝑑𝜔

ℝ+ 

 

= ∫ ∫
𝑒𝑖𝜔(𝑥−𝑦) − 𝑒−𝑖𝜔(𝑥−𝑦)

𝑖𝜔
𝑝𝑦𝑑𝑦

ℝ

𝑑𝜔
ℝ+ 

 

(87) 
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= ∫ ∫
𝑒𝑖𝜔(𝑥−𝑦) − 𝑒−𝑖𝜔(𝑥−𝑦)

𝑖𝜔
𝑑𝜔

ℝ+ 

𝑝𝑦𝑑𝑦
ℝ

        (by Fubini′s theorem) 

= 2∫ ∫
sin𝜔(𝑥 − 𝑦)

𝜔
𝑑𝜔

ℝ+ 

𝑝𝑦𝑑𝑦
ℝ

        (by 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥) 

= 𝜋∫𝒮𝑥−𝑦𝑝𝑦𝑑𝑦
ℝ

= 𝜋 (−∫ 𝑝𝑦𝑑𝑦
∞

𝑥

+∫ 𝑝𝑦𝑑𝑦
𝑥

−∞

) = 𝜋 (−∫𝑝𝑦𝑑𝑦
ℝ

+ 2∫ 𝑝𝑦𝑑𝑦
𝑥

−∞

) 

= 𝜋(−𝜙0 + 2𝑃𝑥) 

The Levy Inversion Formula can also be written in the following form 

𝑃𝑥 =
𝜙0
2
−
1

2𝜋
∫
𝑒−𝑖𝜔𝑥𝜙𝜔
𝑖𝜔

𝑑𝜔
ℝ

 (88) 

which can be proved as 

∫
𝑒−𝑖𝜔𝑥𝜙𝜔
𝑖𝜔

𝑑𝜔
ℝ

= ∫
𝑒−𝑖𝜔𝑥 ∫ 𝑒𝑖𝜔𝑦𝑝𝑦𝑑𝑦ℝ

𝑖𝜔
𝑑𝜔

ℝ

= ∫ ∫
𝑒𝑖𝜔(𝑦−𝑥)

𝑖𝜔
𝑝𝑦𝑑𝑦

ℝ

𝑑𝜔
ℝ

= ∫ ∫
𝑒𝑖𝜔(𝑦−𝑥)

𝑖𝜔
𝑑𝜔

ℝ

𝑝𝑦𝑑𝑦
ℝ

= 𝜋∫𝒮𝑥−𝑦𝑝𝑦𝑑𝑦
ℝ

= 𝜋(−𝜙0 + 2𝑃𝑥) 

where    ∫
𝑒𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ

= ∫
𝑒𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ− 

+∫
𝑒𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ+ 

= ∫
𝑒−𝑖𝜔𝑥

−𝑖𝜔
𝑑𝜔

ℝ+ 

+∫
𝑒𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ+ 

= ∫
𝑒𝑖𝜔𝑥 − 𝑒−𝑖𝜔𝑥

𝑖𝜔
𝑑𝜔

ℝ+ 

= 2∫
sin𝜔𝑥

𝜔
𝑑𝜔

ℝ+
= 𝜋𝒮𝑥 

(89) 

Note that if 𝑝𝑥 is real-valued function (i.e. probability density function), its Fourier transform 

𝜙𝜔  is then even in its real part and odd in its imaginary part [13], we therefore have 𝜙𝜔 = 𝜙−𝜔̅̅ ̅̅ ̅̅ , 

denoting complex conjugate. The inversion formula (88) becomes identical to (81), which can be further 

reduced to  

𝑃𝑥 =
𝜙0
2
+
1

2𝜋
∫

𝑒𝑖𝜔𝑥𝜙−𝜔 − 𝑒
−𝑖𝜔𝑥𝜙𝜔

𝑖𝜔
𝑑𝜔

ℝ+ 

=
𝜙0
2
+
1

2𝜋
∫

𝑒−𝑖𝜔𝑥𝜙𝜔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑒−𝑖𝜔𝑥𝜙𝜔
𝑖𝜔

𝑑𝜔
ℝ+ 

=
𝜙0
2
−
1

𝜋
∫ ℜ[

𝑒−𝑖𝜔𝑥𝜙𝜔
𝑖𝜔

] 𝑑𝜔
ℝ+ 

=
𝜙0
2
−
1

𝜋
∫ ℑ [

𝑒−𝑖𝜔𝑥𝜙𝜔
𝜔

]𝑑𝜔
ℝ+ 

 

(90) 

2.3.3. Characteristic Function 
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In this section, we present a derivation of the closed form characteristic function of the spot in 

Heston model [14]. The definition of the Heston joint process in (50) will be used. Suppose there exists 

a payoff function 𝑔(𝑥𝑇 , 𝑣𝑇)  on 𝑥𝑇  and 𝑣𝑇 , we may calculate risk neutral expectation of the payoff 

function as 

ℎ𝑡 = 𝔼̃𝑡[𝑔(𝑥𝑇 , 𝑣𝑇)] (91) 

For example, the characteristic function of the joint distribution of 𝑥𝑇 and 𝑣𝑇 would be given by 

ℎ𝑡 = 𝜙𝛼,𝛽
𝑥𝑇,𝑣𝑇 = 𝔼̃𝑡[𝑔𝛼,𝛽(𝑥𝑇 , 𝑣𝑇)]      where     𝑔𝛼,𝛽(𝑥𝑇 , 𝑣𝑇) = exp(𝑖𝛼𝑥𝑇 + 𝑖𝛽𝑣𝑇) (92) 

The risk neutral expectation of 𝑔(𝑥𝑇 , 𝑣𝑇) is a martingale because for 𝑠 < 𝑡 < 𝑇 we have 

ℎ𝑠 = 𝔼̃𝑠[𝑔(𝑥𝑇 , 𝑣𝑇)] = 𝔼̃𝑠 [𝔼̃𝑡[𝑔(𝑥𝑇 , 𝑣𝑇)]] = 𝔼̃𝑠[ℎ𝑡] (93) 

Applying Ito’s lemma to ℎ and forcing the drift to be zero (due to martingale property), we end up with 

a PDE for ℎ 

𝜕ℎ

𝜕𝑡
−
𝑣

2

𝜕ℎ

𝜕𝑥
+ 𝜅(𝜃 − 𝑣)

𝜕ℎ

𝜕𝑣
+
𝑣

2

𝜕2ℎ

𝜕𝑥2
+
𝜉2𝑣

2

𝜕2ℎ

𝜕𝑣2
+ 𝜉𝜌𝑣

𝜕2ℎ

𝜕𝑥𝜕𝑣
= 0 (94) 

To determine the solution of (94), the terminal condition ℎ𝑇 = 𝔼̃𝑇[𝑔(𝑥𝑇 , 𝑣𝑇)] = 𝑔(𝑥𝑇 , 𝑣𝑇) at time 𝑇 

must be specified. We will consider that the function at terminal time has the form 𝑔(𝑥𝑇 , 𝑣𝑇) =

exp(𝛾 + 𝑖𝛼𝑥𝑇 + 𝛿𝑣𝑇) . If 𝛾 = 0  and 𝛿 = 𝑖𝛽 , the function becomes 𝑔𝛼,𝛽(𝑥𝑇 , 𝑣𝑇)  as in (92), 

corresponding to the characteristic function 𝜙𝛼,𝛽
𝑥𝑇,𝑣𝑇 of the joint distribution. If further assuming 𝛾 = 0 

and 𝛿 = 0 , we have 𝑔𝛼(𝑥𝑇) = exp(𝑖𝛼𝑥𝑇) , corresponding to the characteristic function 𝜙𝛼
𝑥𝑇  of the 

marginal distribution of 𝑥𝑇. 

Heston [24] guessed a solution for ℎ that has the form 

ℎ𝑡 = 𝔼̃𝑡[𝑔(𝑥𝑇 , 𝑣𝑇)] = exp(𝑄 + 𝑖𝛼𝑥𝑡 + 𝐷𝑣𝑡) , 𝑄 = 𝑄(𝜏, 𝛼, 𝛾, 𝛿), 𝐷 = 𝐷(𝜏, 𝛼, 𝛾, 𝛿) (95) 

with 𝜏 = 𝑇 − 𝑡. Substituting the tentative solution (95) into (94) yields 

𝜕𝑄

𝜕𝑡
+ 𝑣

𝜕𝐷

𝜕𝑡
−
𝑖𝛼𝑣

2
+ 𝜅(𝜃 − 𝑣)𝐷 −

𝛼2𝑣

2
+
𝜉2𝑣

2
𝐷2 + 𝑖𝛼𝐷𝜉𝜌𝑣 = 0 (96) 
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⟹
𝜕𝑄

𝜕𝑡
+ 𝜅𝜃𝐷 + (

𝜕𝐷

𝜕𝑡
+
𝜉2

2
𝐷2 −𝑚𝐷 −

𝛼(𝑖 + 𝛼)

2
) 𝑣 = 0      for      𝑚 = 𝜅 − 𝛼𝜉𝜌𝑖 

As the 𝑣 is an independent variable, (96) is zero only if  

𝜕𝑄

𝜕𝑡
+ 𝜅𝜃𝐷 = 0      and      

𝜕𝐷

𝜕𝑡
+
𝜉2

2
𝐷2 −𝑚𝐷 −

𝛼(𝑖 + 𝛼)

2
= 0 (97) 

Changing the variable 𝑡 to 𝜏 = 𝑇 − 𝑡, we have 

𝜕𝑄

𝜕𝜏
= 𝜅𝜃𝐷        and        

𝜕𝐷

𝜕𝜏
=
𝜉2

2
𝐷2 −𝑚𝐷 −

𝛼(𝑖 + 𝛼)

2
 (98) 

The terminal condition for these equations is given by 𝑄𝜏=0 = 𝛾 and 𝐷𝜏=0 = 𝛿. The ODE for 𝐷 is a 

Riccati equation that only depends on 𝐷. This Riccati equation can be turned into an ODE through the 

change of variable, 𝑍 = (𝐷 − 𝐷̂)
−1

, where 𝐷̂ is a particular solution to the second equation in (98) 

𝜕𝑍

𝜕𝜏
= −

1

(𝐷 − 𝐷̂)
2

𝜕(𝐷 − 𝐷̂)

𝜕𝜏
= −𝑍2 (

𝜉2

2
𝐷2 −𝑚𝐷 −

𝜉2

2
𝐷̂2 +𝑚𝐷̂) = −(𝜉2𝐷̂ − 𝑚)𝑍 −

𝜉2

2
 

⟹
𝜕𝑍

𝜕𝜏
+ 𝐵𝑍 + 𝐴 = 0      where      𝐴 =

𝜉2

2
, 𝐵 = 𝜉2𝐷̂ − 𝑚 

(99) 

The solution to (99) is given by  

𝑍 = −
𝐴

𝐵 
+ (𝑍𝜏=0 +

𝐴

𝐵 
) 𝑒−𝐵𝜏      with      𝑍𝜏=0 =

1

𝐷𝜏=0 − 𝐷̂
=

1

𝛿 − 𝐷̂
 

⟹ 𝐷 =
1

−
𝐴
𝐵 + (𝑍𝜏=0 +

𝐴
𝐵 ) 𝑒

−𝐵𝜏
+ 𝐷̂ 

(100) 

The particular solution 𝐷̂ can be as simple as a constant, which implies by the second equation in (98) it 

could be the solution of the quadratic equation  

𝜉2

2
𝐷̂2 −𝑚𝐷̂ −

𝛼(𝑖 + 𝛼)

2
= 0 ⟹ 𝐷̂ =

𝑚 + 𝑑

𝜉2
      where      𝑑 = ±√𝑚2 + 𝜉2𝛼(𝑖 + 𝛼) (101) 

This particular solution for 𝐷̂ makes 𝐵 = 𝑑. The solution for 𝐷 in (100) can then be derived as 

𝐷 =
1

−
𝜉2

2𝑑
+ (

−𝜉2

𝑚 + 𝑑 − 𝛿𝜉2
+
𝜉2

2𝑑
) 𝑒−𝑑𝜏

+
𝑚 + 𝑑

𝜉2
 

(102) 
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=
1

𝜉2
(𝑚 + 𝑑 −

2𝑑(𝑚 + 𝑑 − 𝛿𝜉2)

(𝑚 + 𝑑 − 𝛿𝜉2) − (𝑚 − 𝑑 − 𝛿𝜉2)𝑒−𝑑𝜏
) 

=
1

𝜉2
(𝑚 + 𝑑 −

2𝑑

1 − 𝑔̂𝑒−𝑑𝜏
)            (by defining  𝑔̂ =

𝑚 − 𝑑 − 𝛿𝜉2

𝑚+ 𝑑 − 𝛿𝜉2
) 

=
1

𝜉2
𝑚 − 𝑑 − (𝑚 + 𝑑)𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
=
𝑚 + 𝑑

𝜉2
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
            (by defining  𝑔 =

𝑚 − 𝑑

𝑚 + 𝑑
) 

The 𝐷 can then be plugged into the ODE for 𝑄 in (98), such that 

𝜕𝑄

𝜕𝜏
= 𝜅𝜃

𝑚 + 𝑑

𝜉2
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
    ⟹     𝑄 = 𝜅𝜃

𝑚 + 𝑑

𝜉2
∫
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
𝑑𝜏 + 𝑄̅ (103) 

where 𝑄̅ is a constant to be fixed by terminal condition. The indefinite integral in (103) can be solved 

through change of variable 𝑢 = exp(−𝑑𝜏) where 𝜕𝑢/𝜕𝜏 = −𝑢𝑑, such that 

∫
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
𝜕𝜏 = −∫

𝑔 − 𝑔̂𝑢

1 − 𝑔̂𝑢

1

𝑢𝑑
𝜕𝑢 = −

1

𝑑
∫

𝑔
𝑢 − 𝑔̂

1 − 𝑔̂𝑢
𝜕𝑢

= −
1

𝑑
∫(

𝑔
𝑢 − 𝑔̂ −

𝑔
𝑢
(1 − 𝑔̂𝑢)

1 − 𝑔̂𝑢
+
𝑔

𝑢
)𝜕𝑢 = −

1

𝑑
∫(

(𝑔 − 1)𝑔̂

1 − 𝑔̂𝑢
+
𝑔

𝑢
)𝜕𝑢

=
𝑔 − 1

𝑑
ln(1 − 𝑔̂𝑢) −

𝑔

𝑑
ln 𝑢 =

𝑔 − 1

𝑑
ln(1 − 𝑔̂𝑒−𝑑𝜏) + 𝑔𝜏 

(104) 

which gives  

𝑄 = 𝜅𝜃
𝑚 + 𝑑

𝜉2
(
𝑔 − 1

𝑑
ln(1 − 𝑔̂𝑒−𝑑𝜏) + 𝑔𝜏) + 𝑄̅ =

𝜅𝜃

𝜉2
(−2 ln(1 − 𝑔̂𝑒−𝑑𝜏) + (𝑚 − 𝑑)𝜏) + 𝑄̅ (105) 

We then fix 𝑄̅ by 𝑄𝜏=0 = 𝛾 

𝑄𝜏=0 = −2
𝜅𝜃

𝜉2
ln(1 − 𝑔̂) + 𝑄̅ = 𝛾    ⟹     𝑄̅ =  2

𝜅𝜃

𝜉2
ln(1 − 𝑔̂) + 𝛾 (106) 

Therefore we have the solution for 𝑄 as below 

𝑄 =
𝜅𝜃

𝜉2
(2 ln

1 − 𝑔̂

1 − 𝑔̂𝑒−𝑑𝜏
 + (𝑚 − 𝑑)𝜏) + 𝛾 (107) 

Combining the solutions in (102) and (107), the solution ℎ𝑡 to the PDE (94) is of the following form  
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ℎ𝑡 = 𝔼̃𝑡[𝑔𝑥𝑇,𝑣𝑇] = exp(𝑄 + 𝑖𝛼𝑥𝑡 + 𝐷𝑣𝑡)         where 

𝑄 =
𝜅𝜃

𝜉2
(2 ln

1 − 𝑔̂

1 − 𝑔̂𝑒−𝑑𝜏
 + (𝑚 − 𝑑)𝜏) + 𝛾, 𝐷 =

𝑚 + 𝑑

𝜉2
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
 

𝑚 = 𝜅 − 𝛼𝜉𝜌𝑖, 𝑑 = ±√𝑚2 + 𝜉2𝛼(𝑖 + 𝛼), 𝑔 =
𝑚 − 𝑑

𝑚 + 𝑑
, 𝑔̂ =

𝑚 − 𝑑 − 𝛿𝜉2

𝑚 + 𝑑 − 𝛿𝜉2
 

(108) 

The joint characteristic function of 𝑥𝑇 and 𝑣𝑇 is obtained by having 𝛾 = 0 and 𝛿 = 𝑖𝛽 

𝜙𝛼,𝛽
𝑥𝑇,𝑣𝑇 = exp(

𝜅𝜃

𝜉2
(2 ln

1 − 𝑔̂

1 − 𝑔̂𝑒−𝑑𝜏
 + (𝑚 − 𝑑)𝜏) + 𝑖𝛼𝑥𝑡 +

𝑚 + 𝑑

𝜉2
𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
𝑣𝑡)       with 

𝑚 = 𝜅 − 𝛼𝜉𝜌𝑖, 𝑑 = √𝑚2 + 𝜉2𝛼(𝑖 + 𝛼), 𝑔 =
𝑚 − 𝑑

𝑚 + 𝑑
, 𝑔̂ =

𝑚 − 𝑑 − 𝑖𝛽𝜉2

𝑚 + 𝑑 − 𝑖𝛽𝜉2
 

(109) 

whilst the marginal characteristic function of 𝑥𝑇 is given by 𝛾 = 0 and 𝛿 = 0 (which implied 𝑔̂ = 𝑔) 

𝜙𝛼
𝑥𝑇 = exp(

𝜅𝜃

𝜉2
(2 ln

1 − 𝑔

1 − 𝑔𝑒−𝑑𝜏
+ (𝑚 − 𝑑)𝜏) + 𝑖𝛼𝑥𝑡 +

𝑚 − 𝑑

𝜉2
1 − 𝑒−𝑑𝜏

1 − 𝑔𝑒−𝑑𝜏
𝑣𝑡)       with 

𝑚 = 𝜅 − 𝛼𝜉𝜌𝑖, 𝑑 = √𝑚2 + 𝜉2𝛼(𝑖 + 𝛼), 𝑔 =
𝑚 − 𝑑

𝑚 + 𝑑
 

(110) 

Further notice that we have 𝑥𝑡 = 0 almost surely, the term 𝑖𝛼𝑥𝑡 in (109) and (110) can be omitted when 

we evaluate the characteristic function.  

In Heston’s original derivation [24], the 𝑑 in (108) takes the negative square root, which makes 

the calculation of the complex logarithm prone to numerical instabilities. This is because taking the 

principal value of the logarithm causes 𝑄 to jump discontinuously each time the imaginary part of the 

argument of the logarithm crosses the negative real axis (i.e. discontinuity due to branch cut of complex 

numbers), especially for long maturities. Albrecher et al. [15] presents an extensive study proving that 

both positive and negative roots are completely equivalent from a theoretical point of view, it is also 

mentioned that rather than using the negative root, the positive square root for 𝑑 guarantees numerical 

stability of the resulting formula under a full dimensional and unrestricted parameter space. 

2.3.4. Vanilla Option Prices 
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Once we know the analytical form of the characteristic function 𝜙𝛼
𝑥𝑇 of the centered log-spot 𝑥𝑇, 

we are able to compute the vanilla option prices using inversion methods. Here, we are going to discuss 

two methods, which treat the option price function analogous to the cumulative density function or the 

probability density function, respectively. In addition, we also summarize the original Heston’s method 

[24]. 

2.3.4.1. Analogy to Cumulative Density Function 

Assuming deterministic 𝑟, the call option is priced by the formula below with 𝑥𝑡 defined in (49) 

𝐶𝐾 = 𝔼̃𝑡 [
𝑀𝑡
𝑀𝑇

(𝑋𝑇 − 𝐾)
+] = 𝐵𝑡,𝑇𝐹𝑡,𝑇𝔼̃𝑡[(𝑒

𝑥𝑇 − 𝑒𝑘)+], 𝑘 = ln
𝐾

𝐹𝑡,𝑇
 (111) 

where 𝑘  is the log moneyness and the cash account 𝑀𝑡 = exp (∫ 𝑟𝑢𝑑𝑢
𝑡

𝑠
). We may further define a 

forward option value in percentage of the underlying forward as 

𝒞𝑘 =
𝐶𝐾

𝐵𝑡,𝑇𝐹𝑡,𝑇
= 𝔼̃𝑡[(𝑒

𝑥𝑇 − 𝑒𝑘)+] = 𝔼̃𝑡[(𝑒
𝑥𝑇 − 𝑒𝑘)𝟙{𝑥𝑇 > 𝑘}], 𝟙{𝑥 > 𝑘} = {

1 if 𝑥 > 𝑘
0 else

 (112) 

As the characteristic function of terminal distribution of 𝑥𝑇 is already known, we may derive Fourier 

transform of the call option, and then perform inversion to gain its value [16] [17]. Since 𝒞𝑘 ∈ [0,1] with 

𝒞−∞ = 1 and 𝒞∞ = 0, we can devise a function Θℎ = 𝒞𝑘=−ℎ = 𝔼̃𝑡[(𝑒
𝑥𝑇 − 𝑒−ℎ)𝟙{−𝑥𝑇 < ℎ}] such that 

Θ−∞ = 0  and Θ∞ = 1 , which behaves just like a cumulative density function in ℎ . We derive the 

Fourier transform of Θℎ by 

𝜒𝜔
𝑐 = ∫ 𝑒𝑖𝜔ℎ𝑑Θℎ

𝑘∈ℝ

= 𝑒𝑖𝜔ℎΘℎ|𝑘=−∞
∞

−∫𝑖𝜔𝑒𝑖𝜔ℎΘℎ𝑑ℎ
ℝ

 

= 𝑒𝑖𝜔∞ −∫ 𝑖𝜔𝑒𝑖𝜔ℎ∫(𝑒𝑥 − 𝑒−ℎ)𝟙{−𝑥 < ℎ}𝑑𝑃𝑥
𝑥𝑇

Ω

𝑑ℎ
ℝ

 

= 𝑒𝑖𝜔∞ −∫ ∫𝑖𝜔(𝑒𝑖𝜔ℎ+𝑥 − 𝑒(𝑖𝜔−1)ℎ)𝟙{−𝑥 < ℎ}𝑑ℎ
ℝ

𝑑𝑃𝑥
𝑥𝑇

Ω

, (by Fubini′s theorem) 

= 𝑒𝑖𝜔∞ −∫ ∫ 𝑖𝜔(𝑒𝑖𝜔ℎ+𝑥 − 𝑒(𝑖𝜔−1)ℎ)𝑑ℎ
∞

−𝑥

𝑑𝑃𝑥
𝑥𝑇

Ω

 

(113) 
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= 𝑒𝑖𝜔∞ −∫ (𝑒𝑖𝜔ℎ+𝑥 −
𝑖𝜔𝑒(𝑖𝜔−1)ℎ

𝑖𝜔 − 1
)|
ℎ=−𝑥

∞

𝑑𝑃𝑥
𝑥𝑇

Ω

 

= 𝑒𝑖𝜔∞ −∫ (𝑒𝑖𝜔∞+𝑥 − 𝑒(−𝑖𝜔+1)𝑥 −
𝑖𝜔𝑒(𝑖𝜔−1)∞

𝑖𝜔 − 1⏟      
=0

+
𝑖𝜔𝑒−(𝑖𝜔−1)𝑥

𝑖𝜔 − 1
)𝑑𝑃𝑥

𝑥𝑇

Ω

 

= 𝑒𝑖𝜔∞ − 𝑒𝑖𝜔∞∫𝑒𝑥𝑑𝑃𝑥
𝑥𝑇

Ω

+∫ (𝑒(−𝑖𝜔+1)𝑥 −
𝑖𝜔𝑒−(𝑖𝜔−1)𝑥

𝑖𝜔 − 1
)𝑑𝑃𝑥

𝑥𝑇

Ω

 

=
1

1 − 𝑖𝜔
∫𝑒𝑖(−𝜔−𝑖)𝑥𝑑𝑃𝑥

𝑥𝑇

Ω

        (by ∫ 𝑒𝑥𝑑𝑃𝑥
𝑥𝑇

Ω

=
1

𝐹𝑡,𝑇
𝔼̃𝑡[𝑋𝑇] = 1) 

=
𝜙−𝜔−𝑖
𝑥𝑇

1 − 𝑖𝜔
 

The 𝜒𝜔
𝑐  is the characteristic function of the call variant Θℎ. The option value 𝒞𝑘 is then given by the 

Levy’s Inversion Formula (81) [18] through below steps 

Θℎ =
𝜒0
𝑐

2
+
1

2𝜋
∫

𝑒𝑖𝜔ℎ𝜒−𝜔
𝑐 − 𝑒−𝑖𝜔ℎ𝜒𝜔

𝑐

𝑖𝜔
𝑑𝜔

ℝ+ 

 

=
1

2
+
1

2𝜋
∫

𝑒𝑖𝜔ℎ
𝜙𝜔−𝑖
𝑥𝑇

𝑖𝜔 + 1
+ 𝑒−𝑖𝜔ℎ

𝜙−𝜔−𝑖
𝑥𝑇

𝑖𝜔 − 1
𝑖𝜔

𝑑𝜔
ℝ+ 

      (by 𝜒0
𝑐 = 𝜙−𝑖

𝑥𝑇 = 1) 

=
1

2
−
1

2𝜋
∫ (𝑒𝑖𝜔ℎ

𝜙𝜔−𝑖
𝑥𝑇

𝜔2 − 𝑖𝜔
+ 𝑒−𝑖𝜔ℎ

𝜙−𝜔−𝑖
𝑥𝑇

𝜔2 + 𝑖𝜔
)𝑑𝜔

ℝ+ 

 

⟹ 𝒞𝑘 = Θℎ=−𝑘 =
1

2
−
1

2𝜋
∫ (𝑒𝑖𝜔𝑘

𝜙−𝜔−𝑖
𝑥𝑇

𝜔2 + 𝑖𝜔
+ 𝑒−𝑖𝜔𝑘

𝜙𝜔−𝑖
𝑥𝑇

𝜔2 − 𝑖𝜔
)𝑑𝜔

ℝ+ 

 

(114) 

where the characteristic function 𝜙𝛼
𝑥𝑇 of the terminal distribution of 𝑥𝑇 is given in (110). The inversion 

formula in (114) involves evaluation of the 𝜙𝛼
𝑥𝑇 function twice, once with 𝛼 = 𝜔 − 𝑖 and the other with 

𝛼 = −𝜔 − 𝑖, which is less efficient. Since 𝒞𝑘 is real-valued, so is Θℎ, we may just use (90) to perform 

the inversion, that is 

Θℎ =
𝜒0
𝑐

2
−
1

𝜋
∫ ℑ [

𝑒−𝑖𝜔ℎ𝜒𝜔
𝑐

𝜔
]𝑑𝜔

ℝ+ 

=
1

2
+
1

𝜋
∫ ℑ [𝑒−𝑖𝜔ℎ

𝜙−𝜔−𝑖
𝑥𝑇

𝑖𝜔2 −𝜔
]

ℝ+ 

𝑑𝜔 (115) 
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⟹ 𝒞𝑘 = Θℎ=−𝑘 =
1

2
+
1

𝜋
∫ ℑ [𝑒𝑖𝜔𝑘

𝜙−𝜔−𝑖
𝑥𝑇

𝑖𝜔2 − 𝜔
]

ℝ+ 

𝑑𝜔 

The integral can be estimated numerically, e.g. by Gauss-Laguerre quadrature. Once we have 𝒞𝑘 in log-

moneyness 𝑘, the option value can be easily derived from relation in (112),  e.g. 𝐶𝐾 = 𝐵𝑡,𝑇𝐹𝑡,𝑇𝒞𝑘 for a 

call, or 𝑃𝐾 = 𝐶𝐾 − 𝐵𝑡,𝑇(𝐹𝑡,𝑇 − 𝐾) for a put by call-put parity. 

2.3.4.2. Analogy to Probability Density Function 

In this section, we will treat 𝒞𝑘 analogous to a probability density [19] [20] and define in terms 

of generalized Fourier transform with 𝑧 = 𝑧𝑟 − 𝑖𝑧𝑖,   𝑧𝑟 ∈ ℝ,   𝑧𝑖 ∈ 𝒟 ⊆ ℝ
+ 

𝜒𝑧
𝑝 = ∫𝑒𝑖𝑧𝑘𝒞𝑘𝑑𝑘

ℝ

= ∫𝑒𝑖𝑧𝑘𝔼̃𝑡[(𝑒
𝑥𝑇 − 𝑒𝑘)𝟙{𝑥𝑇 > 𝑘}]𝑑𝑘

ℝ

 

= 𝔼̃𝑡 [∫𝑒
𝑖𝑧𝑘(𝑒𝑥𝑇 − 𝑒𝑘)𝟙{𝑥𝑇 > 𝑘}𝑑𝑘

ℝ

] = 𝔼̃𝑡 [∫ 𝑒𝑖𝑧𝑘(𝑒𝑥𝑇 − 𝑒𝑘)𝑑𝑘
𝑥𝑇

−∞

] 

= 𝔼̃𝑡 [(
𝑒𝑖𝑧𝑘+𝑥𝑇

𝑖𝑧
−
𝑒(𝑖𝑧+1)𝑘

𝑖𝑧 + 1
)|
𝑘=−∞

𝑥𝑇

] = 𝔼̃𝑡 [
𝑒(𝑖𝑧+1)𝑥𝑇

𝑖𝑧 − 𝑧2
]    (by  lim

𝑘→−∞
𝑒𝑖𝑧𝑘 = 0) 

= 𝔼̃𝑡 [
𝑒𝑖(𝑧−𝑖)𝑥𝑇

𝑖𝑧 − 𝑧2
] =

𝜙𝑧−𝑖
𝑥𝑇

𝑖𝑧 − 𝑧2
 

(116) 

For some distributions, the transform 𝜙𝑧−𝑖
𝑥𝑇  is well-defined only when 𝑧𝑖 is in a subset of the real line. We 

use 𝒟 ⊆ ℝ+ to denote the subset that both guarantees the convergence of 𝑒𝑖𝑧𝑘 and 𝑒𝑖(𝑧−𝑖)𝑘 as 𝑘 ⟶ −∞, 

and assures the finiteness of the transform 𝜙𝑧−𝑖
𝑥𝑇 . 

The forward option value 𝒞𝑘 is then given by the inverse Fourier transform  

𝒞𝑘 =
1

2𝜋
∫ 𝑒−𝑖𝑧𝑘𝜒𝑧

𝑝𝑑𝑧
∞−𝑖𝑧𝑖

−∞−𝑖𝑧𝑖 

=
1

2𝜋
∫ 𝑒−𝑖𝑧𝑘𝜒𝑧

𝑝𝑑(𝑧𝑟 − 𝑖𝑧𝑖)
∞−𝑖𝑧𝑖

−∞−𝑖𝑧𝑖 

=
1

2𝜋
∫ 𝑒−𝑖𝑧𝑘𝜒𝑧

𝑝𝑑𝑧𝑟
ℝ 

=
1

2𝜋
∫ 𝑒−𝑖𝑧𝑘

𝜙𝑧−𝑖
𝑥𝑇

𝑖𝑧 − 𝑧2
𝑑𝑧𝑟

ℝ 

=
1

𝜋
∫ ℜ[𝑒−𝑖𝑧𝑘

𝜙𝑧−𝑖
𝑥𝑇

𝑖𝑧 − 𝑧2
] 𝑑𝑧𝑟

ℝ+ 

 

(117) 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

33 

 

where 𝜙𝛼
𝑥𝑇 is given in (110). The last equality holds because 𝒞𝑘 is real, which implies that the function 

𝜒𝑧
𝑝

 is odd in its imaginary part and even in its real part. The functional form of 𝜙𝛼
𝑥𝑇 can be derived from 

(110) in a similar manner. 

2.3.4.3. Heston’s Original Solution 

At time 𝑡, the European call value with spot 𝑋𝑡 and strike 𝐾 is given by the no-arbitrage formula 

𝐶𝐾 = 𝔼̃𝑡 [
𝑀𝑡
𝑀𝑇

(𝑋𝑇 − 𝐾)
+] = 𝔼̃𝑡 [

𝑀𝑡
𝑀𝑇

𝑋𝑇𝟙{𝑋𝑇 > 𝐾}] − 𝐾𝔼̃𝑡 [
𝑀𝑡
𝑀𝑇

𝟙{𝑋𝑇 > 𝐾}] 

= 𝔼𝑡
𝐵̂𝑋 [

𝐵̂𝑡,𝑇𝑋𝑡

𝐵̂𝑇,𝑇𝑋𝑇
𝑋𝑇𝟙{𝑋𝑇 > 𝐾}] − 𝐾𝔼𝑡

𝑇 [
𝐵𝑡,𝑇
𝐵𝑇,𝑇

𝟙{𝑋𝑇 > 𝐾}] ,
change of numeraire

𝑀𝑡  to 𝐵̂𝑡,𝑇𝑋𝑡 and 𝐵𝑡,𝑇
 

= 𝐵̂𝑡,𝑇𝑋𝑡𝔼𝑡
𝐵̂𝑋[𝟙{𝑋𝑇 > 𝐾}] − 𝐵𝑡,𝑇𝐾𝔼𝑡

𝑇[𝟙{𝑋𝑇 > 𝐾}] 

= 𝐵𝑡,𝑇(𝐹𝑡,𝑇ℙ𝑡
𝐵̂𝑋[𝑋𝑇 > 𝐾] − 𝐾ℙ𝑡

𝑇[𝑋𝑇 > 𝐾]) 

(118) 

where ℙ𝑡
𝐵̂𝑋[𝑋𝑇 > 𝐾] and ℙ𝑡

𝑇[𝑋𝑇 > 𝐾] are both conditional probabilities of spot finishing in-the-money 

at maturity. The ℙ𝑡
𝐵̂𝑋[𝑋𝑇 > 𝐾]  is computed under the measure associated with numeraire 𝐵̂𝑡,𝑇𝑋𝑡 , 

whereas the ℙ𝑡
𝑇[𝑋𝑇 > 𝐾] is computed under 𝑇-forward measure associated with zero coupon bond 𝐵𝑡,𝑇 

as the numeraire [21]. In FX markets, the 𝐵̂𝑡,𝑇 denotes the foreign zero coupon bond. In stock markets, 

the spot 𝑋𝑡 is assumed to be non-dividend-bearing in order to qualify for a numeraire, which makes 

𝐵̂𝑡,𝑇 = 1. In Black-Scholes model 

𝐶𝐾
𝐵𝑆 = 𝐵̂𝑡,𝑇𝑋𝑡Φ(𝑑+) − 𝐾𝐵𝑡,𝑇Φ(𝑑−), 𝑑± =

1

𝜎√𝜏
ln
𝐹𝑡,𝑇
𝐾
±
𝜎√𝜏

2
 (119) 

the ℙ𝑡
𝐵̂𝑋[𝑋𝑇 > 𝐾] and ℙ𝑡

𝑇[𝑋𝑇 > 𝐾]  are computed as Φ(𝑑+) and Φ(𝑑−) respectively, where Φ is the 

standard normal cumulative density. Since the drift adjustment due to change of numeraire is 

𝑑𝑊𝑡
ℕ

Under ℕ
= 𝑑𝑊̃𝑡
Under ℚ

− 𝜎𝑁𝑑𝑡 (120) 
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where ℕ denotes the measure associated with numeraire 𝑁 and ℚ the risk neutral measure. Assuming 

zero dividend for stock (where 𝐵̂𝑡,𝑇 = 1 ) or deterministic foreign rate 𝑞  for FX (where 𝐵̂𝑡,𝑇  is 

deterministic), the process 𝑋𝑡 under the measure associated with itself as the numeraire would be 

𝑑𝑋𝑡
𝑋𝑡

= (𝑟 − 𝑞)𝑑𝑡 + 𝜎𝑑𝑊̃𝑡 = (𝑟 − 𝑞 + 𝜎
2)𝑑𝑡 + 𝜎𝑑𝑊𝑡

𝑋 (121) 

The total drift adjustment 𝜎2𝜏 for period 𝜏 = 𝑇 − 𝑡 is then normalized by the total volatility 𝜎√𝜏 of the 

stock to give a shift term 𝜎√𝜏 as the difference between 𝑑+ and 𝑑− in the classic Black-Scholes formula. 

 Suppose we use the definition of 𝒞𝑘 in (112) for a call, the two conditional probabilities can be 

expressed as  

𝒞𝑘 = 𝔼̃𝑡[(𝑒
𝑥𝑇 − 𝑒𝑘)+] = 𝔼̃𝑡[𝑒

𝑥𝑇𝟙{𝑥𝑇 > 𝑘}] − 𝑒
𝑘𝔼̃𝑡[𝟙{𝑥𝑇 > 𝑘}] = 𝑃𝑘

+ − 𝑒𝑘𝑃𝑘
−      with 

𝑃𝑘
+ = 𝔼̃𝑡[𝑒

𝑥𝑇𝟙{𝑥𝑇 > 𝑘}], 𝑃𝑘
− = 𝔼̃𝑡[𝟙{𝑥𝑇 > 𝑘}] 

(122) 

Because in Heston model the 𝑃𝑘
+ and 𝑃𝑘

− are not available in closed form, Heston [24] sought to firstly 

derive the characteristic functions (i.e. the Fourier transforms) of 𝑃𝑘
+ and 𝑃𝑘

− by solving the PDE (94) 

for each of them, and then obtain the inverse of the two characteristic functions for the option price. 

Since we already have the characteristic function of 𝑥𝑇 as in (110), we can easily derive those for 𝑃𝑘
+ 

and 𝑃𝑘
−  respectively. For example, the Θℎ

+ = 𝑃𝑘=−ℎ
+ = 𝔼̃𝑡[𝑒

𝑥𝑇𝟙{−𝑥𝑇 < ℎ}] ∈ [0,1]  with Θ−∞
+ = 0  and 

Θ∞
+ = 1  can be treated as a CDF and then the characteristic function of 𝑃ℎ

+  by following similar 

derivations in (113) becomes 

𝜒𝜔
+ = ∫ 𝑒𝑖𝜔ℎ𝑑Θℎ

+

𝑘∈ℝ

= 𝑒𝑖𝜔ℎΘℎ
+|
ℎ=−∞

∞
−∫𝑖𝜔𝑒𝑖𝜔ℎΘℎ

+𝑑ℎ
ℝ

 

= 𝑒𝑖𝜔∞ −∫ 𝑖𝜔𝑒𝑖𝜔ℎ∫𝑒𝑥𝟙{−𝑥 < ℎ}𝑑𝑃𝑥
𝑥𝑇

Ω

𝑑ℎ
ℝ

= 𝑒𝑖𝜔∞ −∫ ∫𝑖𝜔𝑒𝑖𝜔ℎ+𝑥𝟙{−𝑥 < ℎ}𝑑ℎ
ℝ

𝑑𝑃𝑥
𝑥𝑇

Ω

 

= 𝑒𝑖𝜔∞ −∫ ∫ 𝑖𝜔𝑒𝑖𝜔ℎ+𝑥𝑑ℎ
∞

−𝑥

𝑑𝑃𝑥
𝑥𝑇

Ω

= 𝑒𝑖𝜔∞ −∫𝑒𝑖𝜔ℎ+𝑥|
ℎ=−𝑥

∞
𝑑𝑃𝑥

𝑥𝑇

Ω

 

= 𝑒𝑖𝜔∞ −∫𝑒𝑖𝜔∞+𝑥𝑑𝑃𝑥
𝑥𝑇

Ω

+∫𝑒−𝑖𝜔𝑥+𝑥𝑑𝑃𝑥
𝑥𝑇

Ω

= ∫𝑒𝑖(−𝜔−𝑖)𝑥𝑑𝑃𝑥
𝑥𝑇

Ω

   

(123) 
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= 𝜙−𝜔−𝑖
𝑥𝑇  

Similarly, Θℎ
− = 𝑃𝑘=−ℎ

− = 𝔼̃𝑡[𝟙{−𝑥𝑇 < ℎ}] ∈ [0,1]  with Θ−∞
− = 0  and Θ∞

− = 1 , the characteristic 

function of Θℎ
− is derived as 

𝜒𝜔
− = ∫ 𝑒𝑖𝜔ℎ𝑑Θℎ

−

𝑘∈ℝ

= 𝑒𝑖𝜔ℎΘℎ
−|
ℎ=−∞

∞
−∫𝑖𝜔𝑒𝑖𝜔ℎΘℎ

−𝑑ℎ
ℝ

 

= 𝑒𝑖𝜔∞ −∫ 𝑖𝜔𝑒𝑖𝜔ℎ∫𝟙{−𝑥 < ℎ}𝑑𝑃𝑥
𝑥𝑇

Ω

𝑑ℎ
ℝ

= 𝑒𝑖𝜔∞ −∫ ∫𝑖𝜔𝑒𝑖𝜔ℎ𝟙{−𝑥 < ℎ}𝑑ℎ
ℝ

𝑑𝑃𝑥
𝑥𝑇

Ω

 

= 𝑒𝑖𝜔∞ −∫ ∫ 𝑖𝜔𝑒𝑖𝜔ℎ𝑑ℎ
∞

−𝑥

𝑑𝑃𝑥
𝑥𝑇

Ω

= 𝑒𝑖𝜔∞ −∫𝑒𝑖𝜔ℎ|
ℎ=−𝑥

∞
𝑑𝑃𝑥

𝑥𝑇

Ω

= ∫𝑒−𝑖𝜔𝑥𝑑𝑃𝑥
Ω

 

= 𝜙−𝜔
𝑥𝑇  

(124) 

The 𝑃𝑘
+ = Θℎ=−𝑘

+  and 𝑃𝑘
− = Θℎ=−𝑘

−  are then obtained through the inverse of 𝜒𝜔
+  and 𝜒𝜔

−  respectively. 

Given that 𝜒0
+ = 𝜒0

− = 1, the Heston’s vanilla option price formula can be derived from 𝜙𝛼
𝑥𝑇 in (110) 

along with the inverse formula in (90). We summarize the final solution below 

𝒞𝑘 = 𝑃𝑘
+ − 𝑒𝑘𝑃𝑘

−    with    𝑃𝑘
± =

1

2
−
1

𝜋
∫ ℑ [𝑒𝑖𝜔𝑘

𝜒𝜔
±

𝜔
]𝑑𝜔

ℝ+ 

, 𝜒𝜔
+ = 𝜙−𝜔−𝑖

𝑥𝑇 , 𝜒𝜔
− = 𝜙−𝜔

𝑥𝑇  (125) 

2.4. Piecewise Time Dependent Heston Model 

The time-dependent Heston model we present here was proposed by Elices [22] in 2008. The 

model relies on the joint characteristic function of the two-dimensional Markov process 𝑌𝑡 = (
𝑥𝑡
𝑣𝑡
), 

which we have derived in (110). It bootstraps a series of piecewise constant Heston parameters starting 

from the earliest maturity, each set of parameters for one period of time, which allows the model to fit to 

a term structure of the implied volatility surfaces. 

Without loss of generality, let us consider an 𝑛-dimensional Markov stochastic process 𝑌𝑡. We 

define 𝑝𝑦2
1,2

  the transition probability density having 𝑌 = 𝑦2 at time 𝑡2 conditional on 𝑌 = 𝑦1 at time 𝑡1 

for 𝑡0 ≤ 𝑡1 ≤ 𝑡2. Its joint characteristic function 𝜙𝜔
1,2

 is the multi-dimensional Fourier transform of the 

density 𝑝𝑦2
1,2

, such that  
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𝜙𝜔
0,2 = ∫ 𝑒𝑖𝜔

′𝑦2𝑝𝑦2
0,2𝑑𝑦2

ℝ𝑛
= ∫ 𝑒𝑖𝜔

′𝑦2∫ 𝑝𝑦2
1,2𝑝𝑦1

0,1𝑑𝑦1
ℝ𝑛

𝑑𝑦2
ℝ𝑛

= ∫ ∫ 𝑒𝑖𝜔
′𝑦2𝑝𝑦2

1,2𝑝𝑦1
0,1𝑑𝑦1

ℝ𝑛
𝑑𝑦2

ℝ𝑛
 

= ∫ ∫ 𝑒𝑖𝜔
′𝑦2𝑝𝑦2

1,2𝑑𝑦2
ℝ𝑛

𝑝𝑦1
0,1𝑑𝑦1

ℝ𝑛
= ∫ 𝜙𝜔

1,2𝑝𝑦1
0,1𝑑𝑦1

ℝ𝑛
 

(126) 

Consider a family of exponential characteristic functions with exponent linear in the state 𝑦1 at time 𝑡1 

𝜙𝜔
1,2 = exp(𝐴1,2(𝜔) + 𝐵1,2(𝜔)′𝑦1) (127) 

we have 

𝜙𝜔
0,2 = ∫ exp(𝐴1,2(𝜔) + 𝐵1,2(𝜔)′𝑦1) 𝑝𝑦1

0,1𝑑𝑦1
ℝ𝑛

= exp(𝐴1,2(𝜔))∫ exp(𝐵1,2(𝜔)′𝑦1) 𝑝𝑦1
0,1𝑑𝑦1

ℝ𝑛
 

= exp(𝐴1,2(𝜔))∫ exp (𝑖(−𝑖𝐵1,2(𝜔))
′
𝑦1) 𝑝𝑦1

0,1𝑑𝑦𝑢
ℝ𝑛

= exp(𝐴1,2(𝜔))𝜙0,1(−𝑖𝐵1,2(𝜔)) 

= exp (𝐴1,2(𝜔) + 𝐴0,1(−𝑖𝐵1,2(𝜔)) + 𝐵0,1(−𝑖𝐵1,2(𝜔))
′
𝑦0) 

(128) 

where 𝐴 is a complex scalar function and 𝐵 is an 𝑛-dimensional complex vector function. Identifying 

terms between the (127) when 𝑡1 = 𝑡0 and the (128), we find that 

𝐴0,2(𝜔) = 𝐴1,2(𝜔) + 𝐴0,1(−𝑖𝐵1,2(𝜔)), 𝐵0,2(𝜔) = 𝐵0,1(−𝑖𝐵1,2(𝜔)) (129) 

Formula (129) gives a recursive definition of 𝐴0,2(𝜔) and 𝐵0,2(𝜔), which can be used to bootstrap the 

Heston model parameters for each time period starting from the earliest maturity. For illustrative 

purpose, the first 3 periods are presented below 

Tenure 𝐴 𝐵 

𝑡0 → 𝑡1 𝐴0,1(𝜔) 𝐵0,1(𝜔) 

𝑡0 → 𝑡2 𝐴1,2(𝜔) + 𝐴0,1(−𝑖𝐵1,2(𝜔)) 𝐵0,1(−𝑖𝐵1,2(𝜔)) 

𝑡0 → 𝑡3 𝐴2,3(𝜔) + 𝐴1,2(−𝑖𝐵2,3(𝜔)) + 𝐴0,1 (−𝑖𝐵1,2(−𝑖𝐵2,3(𝜔))) 𝐵0,1 (−𝑖𝐵1,2(−𝑖𝐵2,3(𝜔))) 

 

 In Heston model, we see from (109) that these parameters correspond to 

𝜔 = (
𝛼

𝛽
) , 𝐴(𝜔) =

𝜅𝜃

𝜉2
(2 ln

1 − 𝑔̂

1 − 𝑔̂𝑒−𝑑𝜏
 + (𝑚 − 𝑑)𝜏) , 𝐵(𝜔) = (

𝑖𝛼
𝑚 + 𝑑
𝜉2

𝑔 − 𝑔̂𝑒−𝑑𝜏

1 − 𝑔̂𝑒−𝑑𝜏
) (130) 

It can be seen that, for the first entry, we always have (−𝑖𝐵)1 = 𝜔1 = 𝛼. 
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2.5. Forward Equation 

Heston model 

𝑑𝑆𝑡
𝑆𝑡
= (𝑟 − 𝑟̂)𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡, 𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊2,𝑡, 𝑑𝑊1,𝑡𝑑𝑊2,𝑡 = 𝜌𝑑𝑡 

 

𝑑𝑋𝑡 = (𝑟 − 𝑟̂ −
𝑣𝑡
2
)𝑑𝑡 + √𝑣𝑡𝑑𝑊1,𝑡, 𝑋𝑡 = ln 𝑆𝑡 

𝑌𝑡 = ln 𝑣𝑡 

𝑑𝑌𝑡 =
1

𝑣𝑡
𝑑𝑣𝑡 −

1

2𝑣𝑡
2 𝑑𝑣𝑡𝑑𝑣𝑡 =

𝜅(𝜃 − 𝑣𝑡)

𝑣𝑡
𝑑𝑡 +

𝜉

√𝑣𝑡
𝑑𝑊2,𝑡 −

𝜉2

2𝑣𝑡
𝑑𝑡

= (
2𝜅𝜃 − 𝜉2

2𝑣𝑡
− 𝜅)𝑑𝑡 +

𝜉

√𝑣𝑡
𝑑𝑊2,𝑡 

(131) 

Stochastic Local Volatility model 

𝑑𝑋𝑡 = (𝑟 − 𝑟̂ −
𝜎𝑡,𝑋
2 𝜂𝑡

2𝑣𝑡
2

)𝑑𝑡 + 𝜎𝑡,𝑋𝜂𝑡√𝑣𝑡𝑑𝑊1,𝑡,

𝑑𝑌𝑡 = (
2𝜅𝜃 − 𝜉2

2𝑣𝑡
− 𝜅)𝑑𝑡 +

𝜉

√𝑣𝑡
𝑑𝑊2,𝑡 

(132) 

Let 𝛿(𝑡, 𝑋𝑡, 𝑌𝑡) = 𝜎𝑡,𝑋𝜂𝑡√𝑣𝑡, we can rewrite the model 

𝑑𝐻𝑡 = 𝐴(𝑡, 𝐻𝑡)𝑑𝑡 + 𝐵(𝑡, 𝐻𝑡)𝑑𝑊𝑡, 𝐻𝑡 = (
𝑋𝑡
𝑌𝑡
) , 𝑑𝑊𝑡𝑑𝑊𝑡

′ = (
1 𝜌
𝜌 1

)𝑑𝑡 

𝐴(𝑡, 𝐻𝑡) = (
𝑟 − 𝑟̂ −

1
2 𝛿

2

2𝜅𝜃 − 𝜉2

2𝑣 − 𝜅
) , 𝐵(𝑡, 𝐻𝑡) = (

𝛿 0

0
𝜉

√𝑣

) 

(133) 

The forward PDE for the transition probability density 𝑝 = 𝑝(𝑡, 𝐻𝑡|𝑠, 𝐻𝑠)  corresponding to the 2D 

process 𝐻𝑡 can be derived from (10) 

𝜕𝑝

𝜕𝑡
+∑

𝜕(𝑝𝐴𝑖)

𝜕𝐻𝑖

2

𝑖=1

−
1

2
∑

𝜕2(𝑝∑ 𝜌𝑖𝑗𝐵𝑖𝑘𝐵𝑗𝑘
2
𝑘=1 )

𝜕𝐻𝑖𝜕𝐻𝑗

2

𝑖,𝑗=1

= 0 (134) 

where 𝜌𝑖𝑗 = 𝜌 if 𝑖 ≠ 𝑗 or 1 otherwise. This translates into 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

38 

 

𝜕𝑝

𝜕𝑡
=
1

2

𝜕2(𝛿2𝑝)

𝜕𝑋2
+
1

2

𝜕2 (
𝜉2

𝑣
𝑝)

𝜕𝑌2
−

𝜕 ((𝑟 − 𝑟̂ −
1
2 𝛿

2) 𝑝)

𝜕𝑋
−

𝜕 ((
2𝜅𝜃 − 𝜉2

2𝑣 − 𝜅)𝑝)

𝜕𝑌

+

𝜕2 (𝜌
𝜉𝛿

√𝑣
𝑝)

𝜕𝑋𝜕𝑌
 

𝜕𝑝

𝜕𝑡
=
1

2

𝜕2(𝛿2𝑝)

𝜕𝑋2
+
1

2

𝜕2 (
𝜉2

𝑣 𝑝
)

𝜕𝑌2
−

𝜕 ((𝑟 − 𝑟̂ −
1
2 𝛿

2) 𝑝)

𝜕𝑋
−

𝜕 ((
2𝜅𝜃 − 𝜉2

2𝑣 − 𝜅)𝑝)

𝜕𝑌

+
𝜕2(𝜌𝜉𝜎𝜂𝑝)

𝜕𝑋𝜕𝑌
 

(135) 

From (47),  

𝔼[𝑣𝑡|𝑣𝑠] = 𝜃 + (𝑣𝑠 − 𝜃)𝑒
−𝜅(𝑡−𝑠) 

𝕍[𝑣𝑡|𝑣𝑠] =
𝑣𝑠𝜉

2

𝜅
(𝑒−𝜅(𝑡−𝑠) − 𝑒−2𝜅(𝑡−𝑠)) +

𝜃𝜉2

2𝜅
(1 − 𝑒−𝜅(𝑡−𝑠))

2
 

(136) 

 

 

 

3. HESTON MODEL: PDE BY FINITE ELEMENT METHOD 

In 1973, Black and Scholes introduced a simple formula [23] to price European-style options 

under a few strong assumptions. It was the first successful attempt to provide an arbitrage free valuation 

of financial derivatives. However due to limitations, the model fails to capture some critical features 

observed in financial markets, such as heavy tails of return, skewness and smile in implied volatility, 

clustering and autocorrelation in volatility, etc. Many approaches have been proposed to address these 

issues. One of such approaches is to assume the volatility process is stochastic and correlated with spot 

process. Heston [24] proposed a stochastic volatility model in 1993. It extends the Black-Scholes model 

and includes it as a special case. One major advantage of the Heston model is that it can be solved in 

closed-form for vanilla options. For exotic products, the prices are usually obtained numerically. 

Traditionally, the PDE’s that arise from option pricing are generally solved by finite difference method 
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(FDM). FDM is straightforward to implement, but it also imposes many strong constraints. For example, 

it may demand sufficiently smooth terminal and boundary conditions, rectangular domains, etc. To relax 

these constraints, finite element methods (FEM) appear to be promising candidates for solving such 

PDE’s. Many studies have been focused on this topic. Topper [25] provides an excellent introduction to 

the FEM in the context of financial engineering applications. Previous work by Winkler et al. [26] 

illustrates an application of FEM to valuation of vanilla option in Heston stochastic volatility model. 

Achdou and Tchou [27] Propose a finite element analysis for Black-Scholes equation with stochastic 

volatility process. Miglio and Sgarra [28] discuss an application of finite element method for option 

pricing in a stochastic volatility model with jumps, known as the Bates model.  

In this chapter, we will present an implementation of finite element method in the Heston model 

for pricing exotic options. Our journey starts with the PDE arising from the Heston model. 

3.1. The Partial Differential Equation 

Let 𝑈(𝑡, 𝑣𝑡, 𝑋𝑡) =
1

𝐷𝑡
𝔼̃𝑡[𝐷𝑇𝑈(𝑇, 𝑣𝑇 , 𝑋𝑇)] be the price of a contingent payment 𝑈(𝑇, 𝑣𝑇 , 𝑋𝑇) that 

occur at maturity 𝑇. Assuming deterministic interest rate, we have the dynamics of 𝐷𝑡𝑈(𝑡, 𝑣𝑡, 𝑋𝑡) in 

Heston model (40) under risk neutral measure ℚ, that is 

1

𝐷𝑡
𝑑(𝐷𝑡𝑈(𝑡, 𝑣𝑡 , 𝑋𝑡)) = 𝑑𝑈 − 𝑟𝑈𝑑𝑡 

=
𝜕𝑈

𝜕𝑡
𝑑𝑡 +

𝜕𝑈

𝜕𝑋
𝑑𝑋 +

1

2

𝜕2𝑈

𝜕𝑋2
𝑑𝑋𝑑𝑋 +

𝜕𝑈

𝜕𝑣
𝑑𝑣 +

1

2

𝜕2𝑈

𝜕𝑣2
𝑑𝑣𝑑𝑣 +

𝜕2𝑈

𝜕𝑣𝜕𝑋
𝑑𝑣𝑑𝑋 − 𝑟𝑈𝑑𝑡 

=
𝜕𝑈

𝜕𝑡
𝑑𝑡 +

𝜕𝑈

𝜕𝑋
(𝑟 − 𝑞)𝑋𝑑𝑡 +

𝜕𝑈

𝜕𝑋
𝑋√𝑣𝑑𝑊̃1 +

𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
𝑑𝑡 +

𝜕𝑈

𝜕𝑣
𝜅(𝜃 − 𝑣)𝑑𝑡 +

𝜕𝑈

𝜕𝑣
𝜉√𝑣𝑑𝑊̃2

+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
𝑑𝑡 + 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
𝑑𝑡 − 𝑟𝑈𝑑𝑡 

(137) 

Since the 𝐷𝑡𝑈(𝑡, 𝑣𝑡 , 𝑋𝑡) is a martingale under ℚ, the 𝑑𝑡-term in (137) must vanish, which defines a 

parabolic diffusion-convection-reaction PDE that a derivative price 𝑈 must follow 

𝜕𝑈

𝜕𝑡
+
𝑣𝜉2

2

𝜕2𝑈

𝜕𝑣2
+ 𝑋𝑣𝜉𝜌

𝜕2𝑈

𝜕𝑣𝜕𝑋
+
𝑣𝑋2

2

𝜕2𝑈

𝜕𝑋2
+ 𝜅(𝜃 − 𝑣)

𝜕𝑈

𝜕𝑣
+ (𝑟 − 𝑞)𝑋

𝜕𝑈

𝜕𝑋
− 𝑟𝑈 = 0 

(138) 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

40 

 

By change of variable 𝑦𝑡 = ln𝑋𝑡, PDE (138) can be further transformed into 

𝜕𝑤

𝜕𝑡
+
𝜉2𝑣

2

𝜕2𝑤

𝜕𝑣2
+ 𝜌𝜉𝑣

𝜕2𝑤

𝜕𝑣𝜕𝑦
+
𝑣

2

𝜕2𝑤

𝜕𝑦2
+ 𝜅(𝜃 − 𝑣)

𝜕𝑤

𝜕𝑣
+ (𝑟 − 𝑞 −

𝑣

2
)
𝜕𝑤

𝜕𝑦
− 𝑟𝑤 = 0 (139) 

where 𝑤(𝑡, 𝑣𝑡, 𝑦𝑡) = 𝑈(𝑡, 𝑣𝑡 , 𝑋𝑡). The PDE (139) is actually identical to our previously derived (94) 

knowing that 

𝑤(𝑡, 𝑣𝑡 , 𝑦𝑡) = 𝑒
𝑟𝑡ℎ(𝑡, 𝑣𝑡, 𝑥𝑡), 𝑥𝑡 = ln

𝑋𝑡
𝑋0
− (𝑟 − 𝑞)𝑡 (140) 

This can be shown by using the chain rule to derive partial derivatives after change of variables  

𝜕𝑤

𝜕𝑡
= (

𝜕

𝜕𝑡
+
𝜕𝑥

𝜕𝑡

𝜕

𝜕𝑥
) (𝑒𝑟𝑡ℎ) = 𝑒𝑟𝑡 (𝑟ℎ +

𝜕ℎ

𝜕𝑡
+
𝜕𝑥

𝜕𝑡

𝜕ℎ

𝜕𝑥
) = 𝑒𝑟𝑡 (𝑟ℎ +

𝜕ℎ

𝜕𝑡
− (𝑟 − 𝑞)

𝜕ℎ

𝜕𝑥
) 

𝜕𝑤

𝜕𝑣
= 𝑒𝑟𝑡

𝜕ℎ

𝜕𝑣
,

𝜕2𝑤

𝜕𝑣2
= 𝑒𝑟𝑡

𝜕2ℎ

𝜕𝑣2
,

𝜕2𝑤

𝜕𝑣𝜕𝑦
=
𝜕

𝜕𝑣
(
𝜕(𝑒𝑟𝑡ℎ)

𝜕𝑥

𝜕𝑥

𝜕𝑦
) = 𝑒𝑟𝑡

𝜕2ℎ

𝜕𝑣𝜕𝑥
 

𝜕𝑤

𝜕𝑦
=
𝜕(𝑒𝑟𝑡ℎ)

𝜕𝑥

𝜕𝑥

𝜕𝑦
= 𝑒𝑟𝑡

𝜕ℎ

𝜕𝑥
,

𝜕2𝑤

𝜕𝑦2
= 𝑒𝑟𝑡

𝜕

𝜕𝑦
(
𝜕ℎ

𝜕𝑡

𝜕𝑡

𝜕𝑦
+
𝜕ℎ

𝜕𝑥

𝜕𝑥

𝜕𝑦
) = 𝑒𝑟𝑡

𝜕2ℎ

𝜕𝑥2
 

(141) 

For simplicity, the PDE (139) can be further expressed in terms of the gradient and divergence 

operator 

(𝜕𝑡 + 𝛁 ∙ 𝐀𝛁 − 𝐛 ∙ 𝛁 − 𝑟)𝑤 = 0, 𝐀 =
𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

) , 𝐛 = (

𝜉2

2
− 𝜅(𝜃 − 𝑣)

𝑣 + 𝜌𝜉

2
− (𝑟 − 𝑞)

) (142) 

where 𝜕𝑡 = 𝜕/𝜕𝑡 , the gradient operator 𝛁 = (
𝜕𝑣
𝜕𝑦
), and the divergence operator 𝛁 ∙ = (

𝜕𝑣
𝜕𝑦
) ∙. Note that 

we have the following identities  

𝛁 ∙ 𝐀𝛁 = (
𝜕𝑣
𝜕𝑦
)
𝑇 𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

) (
𝜕𝑣
𝜕𝑦
) = (

𝜕𝑣
𝜕𝑦
)
𝑇 𝑣

2
(
𝜉2𝜕𝑣 + 𝜌𝜉𝜕𝑦
𝜌𝜉𝜕𝑣 + 𝜕𝑦

)

=
𝜉2𝜕𝑣 + 𝜌𝜉𝜕𝑦

2
+
𝑣

2
(𝜉2𝜕𝑣𝑣 + 𝜌𝜉𝜕𝑣𝑦) +

𝑣

2
(𝜌𝜉𝜕𝑣𝑦 + 𝜕𝑦𝑦)

=
𝜉2

2
𝜕𝑣 +

𝜌𝜉

2
𝜕𝑦 + 𝜌𝜉𝑣𝜕𝑣𝑦 +

𝑣𝜉2

2
𝜕𝑣𝑣 +

𝑣

2
𝜕𝑦𝑦 

(143) 
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𝐛 ∙ 𝛁 = (

𝜉2

2
− 𝜅(𝜃 − 𝑣)

𝑣 + 𝜌𝜉

2
− (𝑟 − 𝑞)

)

𝑇

(
𝜕𝑣
𝜕𝑦
) =

𝜉2

2
𝜕𝑣 − 𝜅(𝜃 − 𝑣)𝜕𝑣 +

𝑣 + 𝜌𝜉

2
𝜕𝑦 − (𝑟 − 𝑞)𝜕𝑦 

𝛁 ∙ 𝐀𝛁 − 𝐛 ∙ 𝛁 = 𝜌𝜉𝑣𝜕𝑣𝑦 +
𝑣𝜉2

2
𝜕𝑣𝑣 +

𝑣

2
𝜕𝑦𝑦 + 𝜅(𝜃 − 𝑣)𝜕𝑣 + (𝑟 − 𝑞 −

𝑣

2
) 𝜕𝑦 

Henceforth, we will use (∙) to denote “dot product” of vectors. Here, we may think of the divergence 

operator as a transpose of the gradient operator (a bit abuse of notation). Derivative products can be 

priced by solving the PDE (142) under different terminal and boundary conditions. We first define a 

rectangle bounded domain  

𝛺 ≔ {(𝑣, 𝑦) ∈ ℝ2 ∶ 𝑣 ∈ (𝑣min, 𝑣max),   𝑦 ∈ (𝑦min, 𝑦max)} (144) 

with the boundary of 𝛺 denoted by 𝜕𝛺 and the closure 𝛺̅ = 𝛺 ∪ 𝜕𝛺. The rectangle domain have four 

pieces of boundaries defined as follows 

𝛤1 ≔ {(𝑣, 𝑦) ∈ ℝ2 ∶ 𝑣 = 𝑣min,   𝑦 ∈ (𝑦min, 𝑦max)} 

𝛤2 ≔ {(𝑣, 𝑦) ∈ ℝ2 ∶ 𝑣 = 𝑣max,   𝑦 ∈ (𝑦min, 𝑦max)} 

𝛤3 ≔ {(𝑣, 𝑦) ∈ ℝ2 ∶ 𝑣 ∈ [𝑣min, 𝑣max],   𝑦 = 𝑦min} 

𝛤4 ≔ {(𝑣, 𝑦) ∈ ℝ2 ∶ 𝑣 ∈ [𝑣min, 𝑣max],   𝑦 = 𝑦max} 

(145) 

Here we assume that any points where 𝑦 meets 𝑣 belong to boundaries associated with 𝑦. 

The PDE (142) shows a 2-D dynamic problem. To solve this problem, a semi-discretization in 

time is applied, which yields a series of 2-D boundary value problems. These boundary value problems 

are then solved numerically using 2-D finite element method as time advances.  

3.2. Temporal Discretization 

 It should be noted that the time advances backwards, such that the initial value is given at the 

terminal 𝑡𝑛 = 𝑇 and the solution is sought at 𝑡0 = 0 . The partial derivative with respect to time is 

approximated by finite difference method. According to (142), the 𝑧-weighted finite difference scheme 

for time is given as 
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𝑤̃ − 𝑤

𝑡𝑘+1 − 𝑡𝑘
+ (1 − 𝑧)(𝛁 ∙ 𝐀𝛁 − 𝐛 ∙ 𝛁 − 𝑟)𝑤̃ + 𝑧(𝛁 ∙ 𝐀𝛁 − 𝐛 ∙ 𝛁 − 𝑟)𝑤 = 0 (146) 

where we denote 𝑤 = 𝑤(𝑡𝑘) and 𝑤̃ = 𝑤(𝑡𝑘+1). The quantity associated with time-step 𝑡𝑘+1  will be 

denoted with an extra “~” accent sign. In the above equation, the scheme becomes purely explicit when 

𝑧 = 0, purely implicit when 𝑧 = 1, and becomes Crank-Nicolson scheme when 𝑧 = 0.5. In practice, 

Crank-Nicolson scheme is often in favor due to its superior second order convergence. However, it is 

also well known that the Crank-Nicolson scheme may exhibit localized oscillations for discontinuous 

terminal conditions if the time step is too coarse relative to the spatial step. A remedy proposed by 

Rannacher is to take two fully implicit time steps (𝑧 = 1) before we switch to Crank-Nicolson (𝑧 = 0.5) 

time-stepping. This solution is also known as Rannacher time-stepping [29], which will be used in our 

implementation.  

The computation starts from 𝑡𝑛 = 𝑇 and advances backwards. At maturity, the 𝑤(𝑇) is known 

and given by terminal condition. At time-step 𝑡𝑘, the 𝑤̃ is already known and hence the 𝑤 can derived 

from solving (146). The whole process is repeated until 𝑡 = 0 to get the final solution. Rearrangement of 

(146) gives a new equation, in which we collect all the 𝑤̃ terms on the right hand side and all the 𝑤 

terms on the left 

(𝑧𝛁 ∙ 𝐀𝛁 − 𝑧𝐛 ∙ 𝛁 − 𝑐)𝑤 = (𝑧̃𝛁 ∙ 𝐀𝛁 − 𝑧̃𝐛 ∙ 𝛁 − 𝑐̃)𝑤̃ 

where        𝑐 = 𝑧𝑟 +
1

𝑡𝑘+1 − 𝑡𝑘
, 𝑧̃ = 𝑧 − 1, 𝑐̃ = 𝑐 − 𝑟 

(147) 

3.3. Finite Element Method in 2D 

Finite element method is based on weak formulation. It is ideal for solving PDE when the 

solution lacks smoothness and when the domain is irregular, dynamically changing, and/or unevenly 

spaced. Valuation of complex exotic options can often exhibit these properties, which makes FEM an 

ideal tool for this type of applications. 

3.3.1. Weak Formulation 
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let’s first define a few functional spaces for the solution 𝑤 and the test function 𝜓 

𝐿2(𝛺) = {𝒻: 𝛺 → ℝ:∫𝒻2

𝛺

< ∞} 

𝐻1(𝛺) = {𝒻 ∈ 𝐿2(𝛺) ∶ 𝒟1𝒻 ∈ 𝐿2(𝛺)}, 𝐻0
1(𝛺) = {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 0 on 𝜕𝛺} 

(148) 

where 𝛺 is the open domain given in (144), 𝒟1𝒻  denotes the first order weak partial derivatives of 

function 𝒻. The 𝐿2(𝛺) is the Lebesgue space with Euclidean norm (which coincides with Hilbert space 

here). The 𝐻1(𝛺) and 𝐻0
1(𝛺) are Sobolev space. The (147) can be transformed to a weak formulation by 

multiplying both sides with a scalar-valued test function 𝜓 ∈ 𝐻1(𝛺)(which in turn can be constructed as 

a linear combination of basis functions on the 2-D domain). That is, find 𝑤 ∈ 𝐻1(𝛺) such that 

∫𝜓(𝑧𝛁 ∙ 𝐀𝛁 − 𝑧𝐛 ∙ 𝛁 − 𝑐)𝑤
𝛺

= ∫𝜓(𝑧̃𝛁 ∙ 𝐀𝛁 − 𝑧̃𝐛 ∙ 𝛁 − 𝑐̃)𝑤̃
𝛺

 (149) 

For all 𝜓 ∈ 𝐻1(𝛺) . The weak form can be derived using (first) Green's identity, which is the 

multidimensional analogue of integration by parts. Assuming that 𝑢 is a scalar function and 𝐯 a vector-

valued function, both are continuously differentiable, the integration by parts in multi-dimension follows  

∫𝑢𝛁 ∙ 𝐯
𝛺

= ∫ 𝑢𝐯 ∙ 𝐧
𝜕𝛺

−∫𝛁𝑢 ∙ 𝐯
𝛺

 (150) 

where 𝐧 denotes the outward unit surface normal to 𝜕𝛺. Applying the transformation (150) to both sides 

of (149) we have 

∫𝜓(𝑧𝛁 ∙ 𝐀𝛁 − 𝑧𝐛 ∙ 𝛁 − 𝑐)𝑤
𝛺

= 𝑧∫ 𝜓𝐀𝛁𝑤 ∙ 𝐧
𝜕𝛺

−∫ℛ𝑤
𝛺

        and 

∫𝜓(𝑧̃𝛁 ∙ 𝐀𝛁 − 𝑧̃𝐛 ∙ 𝛁 − 𝑐̃)𝑤̃
𝛺

= 𝑧̃∫ 𝜓𝐀𝛁𝑤̃ ∙ 𝐧
𝜕𝛺

−∫ℛ̃𝑤̃
𝛺

 

(151) 

where we define two more operators 

ℛ = 𝑧(𝛁𝜓 ∙ 𝐀𝛁 + 𝜓𝐛 ∙ 𝛁) + 𝑐𝜓, ℛ̃ = 𝑧̃(𝛁𝜓 ∙ 𝐀𝛁 + 𝜓𝐛 ∙ 𝛁) + 𝑐̃𝜓 (152) 

The (149) eventually becomes 

∫ℛ𝑤
𝛺

− 𝑧∫ 𝜓𝐀𝛁𝑤 ∙ 𝐧
𝜕𝛺

= ∫ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓𝐀𝛁𝑤̃ ∙ 𝐧
𝜕𝛺

 (153) 
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Note that both ℛ and ℛ̃ operators can be time-dependent. The (153) is also called the weak form (or 

variational form) of the PDE (142). This is because the requirements of the solution 𝑤 in (153) have 

been considerably weakened over the strong form in (142). In the weak formulation of the problem, the 

solution 𝑤 and the test function 𝜓 must belong to 𝐻1(𝛺), however it is not necessary that all functions 

and derivatives be continuous.  

3.3.2. Terminal Conditions 

The terminal condition is defined at option maturity by payoff function of a product. For 

instance, a vanilla call (𝜂 = 1) or put (𝜂 = −1) that matures in 𝜏 = 𝑇 − 𝑡  would have a terminal 

condition defined by the payoff function as 

𝑤(𝑇, 𝑣𝑇 , 𝑦𝑇) = (𝜂(exp(𝑦𝑇) − 𝐾))
+

 (154) 

3.3.3. Boundary Conditions 

The boundary conditions, on the other hand, define how a PDE should behave at domain 

boundaries. The boundary integral in (153) 

∫ 𝜓𝐀𝛁𝑤 ∙ 𝐧
𝜕𝛺

 (155) 

must be correctly handled to be consistent with the boundary conditions. In the following, we will 

introduce four types of typical boundary conditions. 

3.3.3.1. Homogeneous Dirichlet Boundary Condition 

 Homogeneous Dirichlet boundary condition requires the function value at domain boundary be 

zero, i.e. 𝑤 = 0  on 𝜕𝛺 . Under this condition, we have 𝑤 ∈ 𝐻0
1(𝛺)  and 𝜓 ∈ 𝐻0

1(𝛺) . The boundary 

integral (155) in (153) is zero as test function 𝜓 is zero on 𝜕𝛺. The weak form of the PDE (153) is to 

find 𝑤 ∈ 𝐻0
1(𝛺), such that for all 𝜓 ∈ 𝐻0

1(𝛺) we have [30] 

∫ℛ𝑤
𝛺

= ∫ℛ̃𝑤̃
𝛺

, 𝑤, 𝜓 ∈ 𝐻0
1(𝛺) (156) 

where the operators ℛ and ℛ̃ are defined in (152). 
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3.3.3.2. Homogeneous Neumann Boundary Condition 

Homogeneous Neumann boundary condition requires the function derivative at domain boundary 

be zero, i.e. 𝐀𝛁𝑤 ∙ 𝐧 = 0  on 𝜕𝛺 . Under this condition, we have 𝑤 ∈ 𝐻1(𝛺)  and 𝜓 ∈ 𝐻1(𝛺) . The 

boundary integral (155) vanishes because 𝐀𝛁𝑤 ∙ 𝐧 = 0 on 𝜕𝛺. The weak form of the PDE (153) is to 

find 𝑤 ∈ 𝐻1(𝛺), such that for all 𝜓 ∈ 𝐻1(𝛺) we have [31] 

∫ℛ𝑤
𝛺

= ∫ℛ̃𝑤̃
𝛺

, 𝑤, 𝜓 ∈ 𝐻1(𝛺) (157) 

Though (157) looks almost identical to (156), the function spaces for the solution and the test functions 

are different. In homogeneous Dirichlet condition, it is the test function 𝜓 = 0 on 𝜕𝛺 that causes the 

boundary integral to vanish, while in homogeneous Neumann condition, it is the function derivative 

𝐀𝛁𝑤 ∙ 𝐧 = 0 on 𝜕𝛺 that erases the boundary integral.  

3.3.3.3. Inhomogeneous Dirichlet Boundary Condition 

 Inhomogeneous Dirichlet boundary condition requires the solution 𝑤 = 𝑔 on 𝜕𝛺 where 𝑔 is a 

function defined on 𝜕𝛺. The function 𝑔 must satisfy some regularity conditions, and we will assume that 

there exists a function 𝑙 ∈ {𝑢 ∈ 𝐻1(𝛺) ∶ 𝑢 = 𝑔 on 𝜕𝛺} . It turns out that the correct space of test 

functions is still 𝐻0
1(𝛺), i.e. 𝜓 ∈ 𝐻0

1(𝛺), the same as in homogeneous Dirichlet condition. However, 

since the desired solution 𝑤  does not satisfy homogeneous Dirichlet condition, this means that 𝑤 ∉

𝐻0
1(𝛺). Instead, the function 𝑢 = 𝑤 − 𝑙 for 𝑢 ∈ 𝐻0

1(𝛺) is zero on 𝜕𝛺, and hence the solution has the 

form 𝑤 = 𝑢 + 𝑙 where 𝑙 is assumed to be known and 𝑢 is unknown. The weak form of the PDE (153) is 

then to find 𝑤 = 𝑢 + 𝑙 for 𝑢 ∈ 𝐻0
1(𝛺), such that for all 𝜓 ∈ 𝐻0

1(𝛺) we have [32] 

∫ℛ(𝑢 + 𝑙)
𝛺

= ∫ℛ̃𝑤̃
𝛺

, 𝑢, 𝜓 ∈ 𝐻0
1(𝛺) (158) 

In Section 3.3.6, we will show how to find a suitable function 𝑙 ∈ {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 𝑔 on 𝜕𝛺} for the 

purpose of finite element method that satisfies Dirichlet condition 𝑙 = 𝑔 on 𝜕𝛺 (note that in a boundary 

value problem, only 𝑔 is given, not 𝑙).   
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3.3.3.4. Inhomogeneous Neumann Boundary Condition 

Inhomogeneous Neumann boundary condition requires the function derivative at domain 

boundary to be a known function, i.e. 𝐀𝛁𝑤 ∙ 𝐧 = ℎ on 𝜕𝛺. Under this condition, we have 𝑤 ∈ 𝐻1(𝛺) 

and 𝜓 ∈ 𝐻1(𝛺). The weak form of the PDE (153) is to find 𝑤 ∈ 𝐻1(𝛺), such that for all 𝜓 ∈ 𝐻1(𝛺) we 

have [33] 

∫ℛ𝑤
𝛺

− 𝑧∫ 𝜓ℎ
𝜕𝛺

= ∫ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓ℎ̃
𝜕𝛺

 (159) 

The weak form is the same as for the homogeneous Neumann condition, except for the extra boundary 

integral terms 𝑧 ∫ 𝜓ℎ
𝜕𝛺

 and 𝑧̃ ∫ 𝜓ℎ̃
𝜕𝛺

. 

 Boundaries involve a combination of these boundary conditions can be treated in a similar 

manner. Since Dirichlet conditions must be explicitly imposed in the weak form while Neumann 

conditions are rather implied, Dirichlet conditions are often called essential boundary conditions while 

Neumann conditions are instead called natural boundary conditions. 

3.3.4. Boundary Conditions for Vanilla Options 

For a vanilla call option, we employ a rectangle domain consisting of 4 pieces of boundaries, 

𝜕𝛺 = 𝛤1 ∪ 𝛤2 ∪ 𝛤3 ∪ 𝛤4 , as defined in (145). On 𝛤1  where 𝑣 = 𝑣min , we choose 𝑣min = 0  and the 

boundary integral (155) becomes zero as the 𝐀 term varnishes. On 𝛤2 where 𝑣 = 𝑣max, we may assume 

inhomogeneous Neumann boundary condition with derivative 𝜕𝑤(𝑡, 𝑣max, 𝑦)/𝜕𝑣  approximated in 

Black-Scholes model (equivalent to the vega sensitivity). We estimate the bound 𝑣max  using the 

conditional mean and variance of 𝑣 given in (47), such that 

𝑣max = 𝔼[𝑣𝑡+𝜏|𝑣𝑡] + 𝑛√𝕍[𝑣𝑡+𝜏|𝑣𝑡] (160) 

where we set 𝑛 = 8  to make the 𝑣max  sufficiently large. On 𝛤3  where 𝑦 = 𝑦min , an inhomogeneous 

Dirichlet boundary condition is devised with boundary values approximated again in Black-Scholes 

model. On 𝛤4  where 𝑦 = 𝑦max , we manage to implement an inhomogeneous Neumann boundary 
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condition with derivative 𝜕𝑤(𝑡, 𝑣, 𝑦max)/𝜕𝑦 approximated in Black-Scholes model (equivalent to the 

delta sensitivity). The 𝑦min and 𝑦max are also determined by the conditional mean of 𝑣, such that 

𝑦min = ln 𝐹𝑡,𝑡+𝜏 −𝑚√𝔼[𝑣𝑡+𝜏|𝑣𝑡], 𝑦max = ln 𝐹𝑡,𝑡+𝜏 +𝑚√𝔼[𝑣𝑡+𝜏|𝑣𝑡] (161) 

 where we set 𝑚 = 4 to make both 𝑦min and 𝑦max sufficiently far away from the spot. These boundary 

conditions are summarized below 

For  (𝑣, 𝑦) ∈ 𝛤1, 𝑣min = 0 ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = 0 

For  (𝑣, 𝑦) ∈ 𝛤2, 𝛁𝑤(𝑡, 𝑣max, 𝑦) = (
𝜕𝑤/𝜕𝑣
0

) ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = ℎ𝑣(𝑡, 𝑣, 𝑦) 

For  (𝑣, 𝑦) ∈ 𝛤3, 𝑤(𝑡, 𝑣, 𝑦min) = 𝑔(𝑡, 𝑣, 𝑦) 

For  (𝑣, 𝑦) ∈ 𝛤4, 𝛁𝑤(𝑡, 𝑣, 𝑦max) = (
0

𝜕𝑤/𝜕𝑦
) ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = ℎ𝑦(𝑡, 𝑣, 𝑦) 

(162) 

where the Dirichlet condition comes from the Black-Scholes call value 

𝑔(𝑡, 𝑣, 𝑦) = exp(𝑦 − 𝑞𝜏)Φ(𝑑+) − 𝐾 exp(−𝑟𝜏)Φ(𝑑−),        𝑑± =
𝑦 − ln𝐾 + (𝑟 + 𝑞)𝜏

√𝑣𝜏
±
√𝑣𝜏

2
 (163) 

The Neumann conditions are further derived as follows 

ℎ𝑣(𝑡, 𝑦, 𝑣) = (
𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

)(
𝜕𝑤

𝜕𝑣
0

)) ∙ (
1
0
) =

𝑣𝜉2

2

𝜕𝑤

𝜕𝑣
 

ℎ𝑦(𝑡, 𝑣, 𝑦) = (
𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

) (
0

𝜕𝑤/𝜕𝑦
)) ∙ (

0
1
) =

𝑣

2

𝜕𝑤

𝜕𝑦
 

(164) 

where the derivatives are also stemmed from the Black-Scholes call value  

𝜕𝑤

𝜕𝑣
=
−exp(𝑦 − 𝑞𝜏)𝜙(𝑑+)𝑑− + 𝐾 exp(−𝑟𝜏)𝜙(𝑑−)𝑑+

2𝑣
= exp(𝑦 − 𝑞𝜏)𝜙(𝑑+)

𝑑+ − 𝑑−
2𝑣

=
exp(𝑦 − 𝑞𝜏)𝜙(𝑑+)√𝜏

2√𝑣
 

𝜕𝑤

𝜕𝑦
= exp(𝑦 − 𝑞𝜏)Φ(𝑑+) +

exp(𝑦 − 𝑞𝜏)𝜙(𝑑+)

√𝑣𝜏
−
𝐾 exp(−𝑟𝜏)𝜙(𝑑−)

√𝑣𝜏

= exp(𝑦 − 𝑞𝜏)Φ(𝑑+) 

(165) 
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using the fact that 

exp(𝑦 − 𝑞𝜏)𝜙(𝑑+) = 𝐾 exp(−𝑟𝜏)𝜙(𝑑−),
𝜕𝑑±
𝜕𝑣

= −
𝑑∓
2𝑣
,

𝜕𝑑±
𝜕𝑦

=
1

√𝑣𝜏
 (166) 

More adaptive boundary conditions may also be used. However, in the case of vanilla options, the 

choice of boundary conditions appears immaterial when the bounded domain becomes sufficiently large. 

Knowing these boundary conditions, we can define a function space 

𝑉 = {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 0 on 𝛤3} (167) 

The weak form of the PDE (153) is to find 𝑤 = 𝑢 + 𝑙 for 𝑢 ∈ 𝑉 and 𝑙 ∈ {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 𝑔 on 𝛤3}, 

such that for all 𝜓 ∈ 𝑉 we have 

∫ℛ(𝑢 + 𝑙)
𝛺

− 𝑧∫ 𝜓ℎ𝑣
𝛤2

− 𝑧∫ 𝜓ℎ𝑦
𝛤4

= ∫ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓ℎ̃𝑣
𝛤2

− 𝑧̃∫ 𝜓ℎ̃𝑦
𝛤4

 (168) 

 In the case of a vanilla put, similar boundary conditions can be employed 

For  (𝑣, 𝑦) ∈ 𝛤1, 𝑣min = 0 ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = 0 

For  (𝑣, 𝑦) ∈ 𝛤2, 𝛁𝑤(𝑡, 𝑣max, 𝑦) = (
𝜕𝑤/𝜕𝑣
0

) ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = ℎ𝑣(𝑡, 𝑣, 𝑦) 

For  (𝑣, 𝑦) ∈ 𝛤3, 𝛁𝑤(𝑡, 𝑣, 𝑦min) = (
0

𝜕𝑤/𝜕𝑦
) ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = ℎ𝑦(𝑡, 𝑣, 𝑦) 

For  (𝑣, 𝑦) ∈ 𝛤4, 𝑤(𝑡, 𝑣, 𝑦max) = 𝑔(𝑡, 𝑣, 𝑦) 

(169) 

where the functions are given below 

𝑔(𝑡, 𝑦, 𝑣) = 𝐾 exp(−𝑟𝜏)Φ(−𝑑−) − exp(𝑦 − 𝑞𝜏)Φ(−𝑑+) 

ℎ𝑣(𝑡, 𝑦, 𝑣) = (
𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

) (
𝜕𝑤/𝜕𝑣
0

)) ∙ (
1
0
) =

𝑣𝜉2

2

𝜕𝑤

𝜕𝑣
,

𝜕𝑤

𝜕𝑣
=
exp(𝑦 − 𝑞𝜏)𝜙(𝑑+)√𝜏

2√𝑣
 

ℎ𝑦(𝑡, 𝑣, 𝑦) = (
𝑣

2
(
𝜉2 𝜌𝜉
𝜌𝜉 1

) (
0

𝜕𝑤/𝜕𝑣
)) ∙ (

0
−1
) = −

𝑣

2

𝜕𝑤

𝜕𝑦
,

𝜕𝑤

𝜕𝑦
= −exp(𝑦 − 𝑞𝜏)Φ(−𝑑+) 

(170) 

The resulted weak form of the PDE (153) is similar to the one we have derived for a vanilla call, which 

is to find 𝑤 = 𝑢 + 𝑙 for 𝑢 ∈ 𝑉 = {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 0 on 𝛤4} and 𝑙 ∈ {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 𝑔 on 𝛤4}, such 

that for all 𝜓 ∈ 𝑉 we have 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

49 

 

∫ℛ(𝑢 + 𝑙)
𝛺

− 𝑧∫ 𝜓ℎ𝑣
𝛤2

− 𝑧∫ 𝜓ℎ𝑦
𝛤3

= ∫ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓ℎ̃𝑣
𝛤2

− 𝑧̃∫ 𝜓ℎ̃𝑦
𝛤3

 (171) 

 We would like to demonstrate the algorithm using vanilla call as an example. In order to find 

numerical solution, the continuous operator problem (168) must be converted to a discrete one. We will 

use Galerkin method [34] [35] to perform the conversion, which computes the best approximation to the 

true solution from a given finite-dimensional subspace.   

3.3.5. Mesh and Basis Functions 

The finite element method is a general and systematic technique for constructing basis functions 

of the finite-dimensional subspace for Galerkin approximations on a mesh that discretizes the 

continuous domain into a union of discrete geometric cells. For our problem, we construct a triangular 

mesh (Figure 1), which can be either structured or unstructured. The intersection of any two triangles in 

the mesh must be a common vertex or a common edge. For example, we denote the closed domain 𝛺̅ =

𝛺 ∪ 𝜕𝛺 = [𝑣min, 𝑣max] × [𝑦min, 𝑦max]. The 𝛺̅ is discretized into a triangulation mesh 𝒯ℎ  consisting of 

triangles 𝑇𝑖 , 𝑖 = 1,⋯ ,𝑁𝑡  as the elements and their nodes  𝐷𝑖 , 𝑖 = 1,⋯ , 𝑁𝑑 . The triangulation 𝒯ℎ  is 

labelled with mesh size ℎ, which is the maximum diameter of any triangle in the triangulation.  

The mesh generator keeps two arrays: a list of nodes and a list of triangles (i.e. elements). In 

addition, it also groups boundary nodes into four node sets, one for each boundary (we assume that any 

points where 𝑣 and 𝑦 meet are nodes in the triangulation, and any such nodes belong to boundaries 

associated with 𝑦). Each triangle element is uniquely defined by its three vertex nodes, while each node 

records relevant information including: index of the node in the node list, coordinates of the node, left 

and right neighbors if the node lies on a boundary (such that the connections of the node to its neighbors 

form part of the boundary. This information is used for boundary integral calculation). Figure 1 

illustrates a simple evenly spaced structured mesh used in the computation. It can be seen that the mesh 

consists of total 𝐼 × 𝐽 squares, 𝑁𝑡 = 2𝐼𝐽 triangles and 𝑁𝑑 = (𝐼 + 1)(𝐽 + 1) nodes, where 𝐼 and 𝐽 are the 

spatial resolution for variable 𝑣 and 𝑦, respectively.  
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Figure 1. A structured triangular mesh 

 

The basis functions for the finite dimensional subspace on the 2-D mesh are defined as piecewise 

linear functions, 𝜙𝑖 , 𝑖 = 1,⋯ ,𝑁𝑑, such that they take value 1 at node 𝐷𝑖 and 0 at all other nodes. This 

basis is usually called Lagrange basis or nodal basis. To allow generic computations over any arbitrary 

triangles, each triangle is mapped by affine transformation to a reference triangle 𝑇̂ = {(𝑣, 𝑦̂) ∈ ℝ2 ∶

 𝑣 ∈ [0, 1], 𝑦̂ ∈ [0, 1 − 𝑣]}, where a “hat” accent is used to denote quantities defined on the reference 

triangle [36]. The reference triangle is shown in Figure 2. The three vertices 𝐷̂𝑖, 𝑖 = 1, 2, 3 are (0, 0), 

(1, 0) and (0, 1), respectively. The open circle denotes 𝜙̂𝑖 = 0 at node 𝐷̂𝑗  if 𝑖 ≠ 𝑗, while the full circle 

denotes 𝜙̂𝑖 = 1 at node 𝐷̂𝑗 if 𝑖 = 𝑗. In summary, the three basis functions on the reference triangle read 

𝜙̂0(𝑣, 𝑦̂) = 1 − 𝑣 − 𝑦̂, 𝜙̂1(𝑣̂, 𝑦̂) = 𝑣, 𝜙̂2(𝑣, 𝑦̂) = 𝑦̂ (172) 

 
Figure 2. The reference triangle and the basis functions 

 

 The mapping from an arbitrary triangle to a reference triangle is achieved via affine 

transformation. Considering an arbitrary triangle 𝑇 with vertices 𝐷0 = (𝑣0, 𝑦0), 𝐷1 = (𝑣1, 𝑦1) and 𝐷2 =

(𝑣2, 𝑦2), the transformation maps the reference triangle 𝑇̂ onto the triangle 𝑇 through 

3                                            3                                          3 

1                        2                  1                         2               1                        2 

y 

v 
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(𝑣, 𝑦) = 𝐹(𝑣, 𝑦̂) = 𝐉 (
𝑣
𝑦̂
) + (

𝑣0
𝑦0
) , 𝐉 =

𝜕𝐹(𝑣, 𝑦̂)

𝜕(𝑣̂, 𝑦̂)
= (

𝑣1 − 𝑣0 𝑣2 − 𝑣0
𝑦1 − 𝑦0 𝑦2 − 𝑦0

) (173) 

where 𝐉 is the Jacobian matrix. Denoting the function defined on the reference triangle with a “hat”, we 

have 𝑓(𝑣, 𝑦) = 𝑓(𝑣, 𝑦̂) whenever  (𝑣, 𝑦) = 𝐹(𝑣, 𝑦̂). In particular, the following three equations hold 

𝑓(0,0) = 𝑓(𝑣0, 𝑦0), 𝑓(1,0) = 𝑓(𝑣1, 𝑦1), 𝑓(0,1) = 𝑓(𝑣2, 𝑦2) (174) 

Additionally, the integration of a function 𝑓(𝑣, 𝑦) over an arbitrary triangle 𝑇 can be transformed into an 

equivalent integration over the reference triangle 𝑇̂ via the integral of a function  

∫𝑓(𝑣, 𝑦)𝑑𝑣𝑑𝑦
𝑇

= ∫ 𝑓(𝐹(𝑣, 𝑦̂)) |
𝜕𝐹(𝑣, 𝑦̂)

𝜕(𝑣, 𝑦̂)
| 𝑑𝑣𝑑𝑦̂

𝑇̂

= 𝒥∫𝑓(𝑣, 𝑦̂)𝑑𝑣𝑑𝑦̂
𝑇̂

, 𝒥 = |det 𝐉| (175) 

where 𝒥  is the absolute of Jacobian determinant of 𝐉 , also known as Jacobian factor. The affine 

transformation greatly simplifies the calculation and renders the use of unstructured mesh possible. In 

our application, we use a mesh grid that is non-uniformly spaced for improved numerical accuracy with 

denser grid points around key values, e.g. spot, strike, initial variance, etc. 

3.3.6. Stiffness Matrix and Load Factor 

Given the boundary conditions (162), we now can divide the mesh nodes (denoted by set 𝑁𝑑; a 

bit abuse of notation here) into two groups, the nodes lying on 𝛤1 ∪ 𝛤2 ∪ 𝛤4 or in 𝛺 that are called free 

nodes (denoted by set 𝑁𝑓) and the nodes on 𝛤3 that are called constrained nodes (denoted by set 𝑁𝑐). 

With the piecewise linear basis functions in Section 3.3.5, the function space 𝑃ℎ  of all continuous 

piecewise linear functions defined on the mesh 𝒯ℎ is a finite dimensional vector space with dimension 

𝑁𝑑, having basis functions {𝜙1, ⋯ , 𝜙𝑁𝑑}. Each function 𝒻 ∈ 𝑃ℎ can be identified as a linear combination 

of the basis functions through formula 

𝒻 = ∑ 𝜑𝑖𝜙𝑖
𝑖∈𝑁𝑑

 (176) 

with a vector 𝜑 ∈ ℝ𝑁𝑑  consisting of the nodal values of 𝒻.  
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 Using Galerkin method, the weak form (168) is to find 𝑤 = 𝑢 + 𝑙 for 𝑢 ∈ 𝑉ℎ = {𝒻 ∈ 𝑃ℎ ∶ 𝒻 =

0 on 𝛤3} and 𝑙 ∈ {𝒻 ∈ 𝑃ℎ ∶ 𝒻 = 𝑔 on 𝛤3}, such that for all 𝜓 ∈ 𝑉ℎ we have 

𝑎(𝑢, 𝜓) = ℓ(𝜓) (177) 

where the bilinear functional 𝑎(∙,∙) and linear functional ℓ(∙) are taken from (168) as  

𝑎(𝑢, 𝜓) = ∫ℛ𝑢
𝛺

, ℓ(𝜓) = ∫ ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓ℎ̃𝑣
𝛤2

− 𝑧̃∫ 𝜓ℎ̃𝑦
𝛤4

+ 𝑧∫ 𝜓ℎ𝑣
𝛤2

+ 𝑧∫ 𝜓ℎ𝑦
𝛤4

−∫ℛ𝑙
𝛺

 (178) 

We may write the solution and the test function as linear combinations of basis functions 

𝑢 = ∑ 𝜇𝑖𝜙𝑖
𝑖∈𝑁𝑓

, 𝜓 = ∑ 𝑐𝑖𝜙𝑖
𝑖∈𝑁𝑓

 (179) 

For the inhomogeneous Dirichlet boundary condition on 𝛤3, the function 𝑙 is any function in 𝑃ℎ  that 

satisfies the boundary condition 𝑙 = 𝑔 on 𝛤3. It may not be easy to find such 𝑙 function exactly, but it is 

easy to define a function 𝑙 that approximately satisfies the boundary condition. Indeed, the continuous 

piecewise linear function 𝑙 defined by 

𝑙 = ∑ 𝜆𝑖𝜙𝑖
𝑖∈𝑁𝑐

 (180) 

where 𝜆𝑖  is the value of function 𝑔  evaluated at node 𝑖 , agrees with 𝑔  at the endpoints of every 

constrained edge and therefore interpolates 𝑔 on 𝛤3. It is a sufficiently good approximation to 𝑔 for the 

purposes of the finite element method [37].  

Using linearity properties of bilinear functional and linear functional we can derive 

𝑎(𝑢, 𝜓) = ℓ(𝜓) ⟹ 𝑎(∑ 𝜇𝑗𝜙𝑗
𝑗∈𝑁𝑓

, ∑ 𝑐𝑖𝜙𝑖
𝑗∈𝑁𝑓

) = ℓ(∑ 𝑐𝑖𝜙𝑖
𝑖∈𝑁𝑓

) 

⟹ ∑ 𝑐𝑖 ∑ 𝜇𝑗𝑎(𝜙𝑗 , 𝜙𝑖)

𝑗∈𝑁𝑓𝑖∈𝑁𝑓

= ∑ 𝑐𝑖ℓ(𝜙𝑖)

𝑖∈𝑁𝑓

 

⟹ ∑ 𝑐𝑖 (∑ 𝑅𝑖𝑗𝜇𝑗 − 𝑓𝑖
𝑗∈𝑁𝑓

)

𝑖∈𝑁𝑓

= 0, 𝑅𝑖𝑗 = 𝑎(𝜙𝑗 , 𝜙𝑖), 𝑓𝑖 = ℓ(𝜙𝑖) 

(181) 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

53 

 

Since 𝑐𝑖 are arbitrary, it is certainly sufficient to satisfy 

∑ 𝑅𝑖𝑗𝜇𝑗 − 𝑓𝑖
𝑗∈𝑁𝑓

= 0 (182) 

or write it in vector-matrix form  

𝑅𝜇 = 𝑓 (183) 

where 𝑅 is called the stiffness matrix and 𝑓  the load factor. Both are known and can be calculated 

directly. The 𝜇 ∈ ℝ𝑁𝑓 is a vector that can be solved from inverting the stiffness matrix. It consists of the 

nodal values of the approximate solution in the finite-dimensional subspace.  

 In order to simplify the implementation, we transform (183) into an equivalent linear system, 

such that the solution vector consists of nodal values of the whole domain (rather than just free nodes) 

including the nodes on Dirichlet boundaries. We first define matrix 𝑄, vectors 𝜆 and 𝛼 as 

𝑅
𝑁𝑓×𝑁𝑓

  𝜇
𝑁𝑓×1

= ∫ℛ𝑢
𝛺

, 𝑄
𝑁𝑓×𝑁𝑐

  𝜆
𝑁𝑐×1

= ∫ℛ𝑙
𝛺

 

𝛼
𝑁𝑓×1

= ∫ℛ̃𝑤̃
𝛺

− 𝑧̃∫ 𝜓ℎ̃𝑣
𝛤2

− 𝑧̃∫ 𝜓ℎ̃𝑦
𝛤4

+ 𝑧∫ 𝜓ℎ𝑣
𝛤2

+ 𝑧∫ 𝜓ℎ𝑦
𝛤4

 

(184) 

where the 𝑅𝜇 is the same as in (183) and 𝛼 − 𝑄𝜆 = 𝑓. With these definitions, the new linear system, 

which is equivalent to (183), would be 

𝑆𝜔 = 𝛽, 𝑆
𝑁𝑑×𝑁𝑑

= (
𝑅 𝑄
0 𝐼

) , 𝜔
𝑁𝑑×1

= (
𝜇
𝜆
) , 𝛽

𝑁𝑑×1
= (

𝛼
𝜆
) (185) 

where the 𝐼 is 𝑁𝑐 ×𝑁𝑐 identity matrix and the 𝜔 vector consists of nodal values of the whole domain 

including all the boundary nodes. We can see that the sub-vector 𝜆 is known and given by the Dirichlet 

boundary conditions. The sub-matrices 𝑅  and 𝑄  and the sub-vector 𝛼  can be evaluated through the 

integrals in (184), which are then used to construct the matrix 𝑆 and vector 𝛽. We solve the linear 

system 𝑆𝜔 = 𝛽 for the vector 𝜔, which consists of the coefficients of the basis functions, provides an 

approximate solution to the continuous function 𝑤 at time-step 𝑡𝑘 . We repeat the process backwards 
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from maturity until 𝑡 = 0, where we can then extract the call option value in the model from the final 

solution vector.   

3.3.6.1. Computation of Integrals 

 From previous discussion, we know that in order to obtain the matrix 𝐻 and the vector 𝑧, we 

must calculate the integrals in (184). For example, the 𝑅𝑖𝑗, as shown in (181), can be calculated as 

𝑅𝑖𝑗 = 𝑎(𝜙𝑗 , 𝜙𝑖) = 𝑧∫𝛁𝜙𝑖 ∙ 𝐀𝛁𝜙𝑗
𝛺

+ 𝑧∫𝜙𝑖𝐛 ∙ 𝛁𝜙𝑗
𝛺

+ 𝑐∫𝜙𝑖𝜙𝑗
𝛺

, ∀  𝑖, 𝑗 ∈ 𝑁𝑓 (186) 

We must evaluate three integrals over the whole triangular mesh. However, because of the local support 

of the basis functions, the 𝑅𝑖𝑗  is evaluated to zero unless the node 𝑖  and 𝑗  are vertices of the same 

triangle of the mesh. Instead of computing the integral over the whole domain 𝛺 directly, we calculate 

the integrals over each triangular element and then assemble over all the triangle elements of the 

domain. Given an arbitrary triangular element 𝑇, we can see that there are only three basis functions 

(corresponding to the three nodes/vertices) are nonzero. There will be 9 combinations of the bilinear 

form to be evaluated on each element. To make the implementation simpler and yet more adaptive, the 

integrals on an arbitrary triangle 𝑇 can be calculated through the mapping of the reference triangle 𝑇̂. 

That is, we calculate the integrals on a reference triangle 𝑇̂, which can be standardized, and the results 

are then linearly transformed back to the arbitrary triangle 𝑇 using the aforesaid affine transformation.  

Accounting for the 9 combinations of the bilinear form among the 3 basis functions, The first 

integral denoted by 𝐼1 appearing in the right hand side of (186) is a 3 × 3 matrix. Over an arbitrary 

triangle 𝑇, the integral is evaluated as  

𝐼1 = [∫𝛁𝜙𝑖 ∙ 𝐀𝛁𝜙𝑗
𝑇

]
𝑖,𝑗=0,1,2

= [∫(𝐉−𝑇𝛁𝜙̂𝑖)
𝑇
(𝐀𝐉−𝑇𝛁𝜙̂𝑗) |

𝜕𝐹(𝑣, 𝑦̂)

𝜕(𝑣, 𝑦̂)
|

𝑇̂

]
𝑖,𝑗=0,1,2

 

= 𝒥 [∫(𝐉−𝑇𝛁𝜙̂𝑖)
𝑇
(𝐀𝐉−𝑇𝛁𝜙̂𝑗)

𝑇̂

]
𝑖,𝑗=0,1,2

= 𝒥(𝐉−𝑇𝐆̂)
𝑇
(∫𝐀
𝑇̂

) 𝐉−𝑇𝐆̂ ≈
1

2
𝒥𝐆̂𝑇𝐉−1𝐀̅𝐉−𝑇𝐆̂ 

where        𝐆̂ = [𝛁𝜙̂𝑗]𝑗=0,1,2 = (
−1 1 0
−1 0 1

)         and 

(187) 
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∫𝐀
𝑇̂

≈ 𝐀̅∫𝑑𝑇̂
𝑇̂

= (
average of 𝐀 over
triangular element

) × (
area of 

reference triangle 
) =

∑ 𝐀𝑛
2
𝑛=0

3

1

2
 

In (187), the subscript 𝑖  and 𝑗  denote the matrix row and column index respectively. The 𝒥  is the 

Jacobian factor defined in (175). The 𝐆̂ is the matrix of the gradients of the three basis functions (172) 

on reference triangle 𝑇̂. Since 𝐆̂ is constant, it can move out of the integral. The 𝐀𝑛, 𝑛 = 0, 1, 2 are the 

matrix 𝐀 evaluated at the three vertices of the triangle 𝑇. To compute the integral ∫ 𝐀
𝑇̂

, matrix 𝐀 is 

assumed to be constant within 𝑇 and takes an average over the three vertices. The second integral 𝐼2 is 

computed as 

𝐼2 = [∫𝜙𝑖𝐛 ∙ 𝛁𝜙𝑗
𝑇

]
𝑖,𝑗=0,1,2

≈ 𝒥 [∫𝜙̂𝑖
𝑇̂

]
𝑖=0,1,2

𝐛̅𝑇𝐉−𝑇𝐆̂ =
𝒥

6
(
1
1
1
) 𝐛̅𝑇𝐉−𝑇𝐆̂      and      𝐛̅ =

1

3
∑𝐛𝑛

2

𝑛=0

 (188) 

In (188), the [∫ 𝜙̂𝑖𝑇̂
]
𝑖=0,1,2

 can be regarded as the volumes of the triangular pyramids formed by the 3 

basis functions integrated over the reference triangle 𝑇̂. Similar to matrix 𝐀, The vector 𝐛 is assumed to 

be constant within a element triangle and takes an average over the three vertices. Hence it can also 

move out of the integral along with the matrix 𝐆̂. The computation of the third integral 𝐼3 is even simpler 

𝐼3 = [∫𝜙𝑖𝜙𝑗
𝑇

]
𝑖,𝑗=0,1,2

= 𝒥 [∫𝜙̂𝑖𝜙̂𝑗
𝑇̂

]
𝑖,𝑗=0,1,2

=
𝒥

24
(
2 1 1
1 2 1
1 1 2

) (189) 

It can be seen that 𝐼1 , 𝐼2  and 𝐼3  are 3 × 3  matrix, while 𝐼2  appears to be asymmetric. In the 

process we determine the nine combinations of the 𝑖 and 𝑗 vertex for each triangle 𝑇. We then map the 

local vertex indices 𝑖 and 𝑗 of the triangle 𝑇 to the node indices of the mesh. The global stiffness matrix 

𝑅 is then assembled over the mesh 𝒯ℎ from the integrals computed on each triangle of the mesh. That is, 

by assuming 𝑖 and 𝑗 are node indices of the mesh (e.g. 𝑖, 𝑗 ∈ 𝑁𝑓), we can find the global stiffness matrix 

𝑅𝑖𝑗 = ∑ [𝑧∫𝛁𝜙𝑖 ∙ 𝐀𝛁𝜙𝑗
𝑇

+ 𝑧∫𝜙𝑖𝐛 ∙ 𝛁𝜙𝑗
𝑇

+ 𝑐∫𝜙𝑖𝜙𝑗
𝑇

]
𝑖,𝑗𝑇∈𝒯ℎ

, ∀  𝑖, 𝑗 ∈ 𝑁𝑓 (190) 
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The entries of matrix 𝑄 in (184) can be derived in the same manner, except that for 𝑄 we have 𝑖 ∈ 𝑁𝑓 

and 𝑗 ∈ 𝑁𝑐. In our implementation, we actually construct matrix 𝑆 directly, in a simpler way. We first 

initiate 𝑆 as an 𝑁𝑑 × 𝑁𝑑 identity matrix and then set its entries as follows 

𝑆𝑖𝑗 = ∑ [𝑧∫𝛁𝜙𝑖 ∙ 𝐀𝛁𝜙𝑗
𝑇

+ 𝑧∫𝜙𝑖𝐛 ∙ 𝛁𝜙𝑗
𝑇

+ 𝑐∫𝜙𝑖𝜙𝑗
𝑇

]
𝑖,𝑗𝑇∈𝒯ℎ

, ∀  𝑖 ∈ 𝑁𝑓 ,   𝑗 ∈ 𝑁𝑑 (191) 

 The computation of vector 𝛽 in (185) is a bit more complicated. In our implementation, we 

compute the 𝛽 in a few steps. We first obtain the vector 𝛽 as 

𝛽 = 𝑆̃
𝑁𝑑×𝑁𝑑

  𝜔̃
𝑁𝑑×1

= ∫ℛ̃𝑤̃
𝛺

 (192) 

where the vector 𝑤̃ is known and the matrix 𝑆̃ is constructed in a way very similar to the matrix 𝑆. We 

initiate 𝑆̃ as an 𝑁𝑑 × 𝑁𝑑 identity matrix and then update its entries by 

𝑆̃𝑖𝑗 = ∑ [𝑧̃∫𝛁𝜙𝑖 ∙ 𝐀𝛁𝜙𝑗
𝑇

+ 𝑧̃∫𝜙𝑖𝐛 ∙ 𝛁𝜙𝑗
𝑇

+ 𝑐̃ ∫𝜙𝑖𝜙𝑗
𝑇

]
𝑖,𝑗𝑇∈𝒯ℎ

, ∀  𝑖 ∈ 𝑁𝑓 ,   𝑗 ∈ 𝑁𝑑 (193) 

The resulted vector 𝛽 must be updated according to the Dirichlet boundary conditions, that is we assign  

𝛽𝑖 = 𝜆𝑖, ∀  𝑖 ∈ 𝑁𝑐 (194) 

Lastly, the boundary integrals resulted from inhomogeneous Neumann boundary conditions must also be 

taken into account. This is relatively easy on a rectangular domain as the basis functions are just triangle 

functions at domain boundary. Assuming Neumann condition on boundary 𝛤 with function ℎ, we can 

estimate the boundary integral as  

∫𝜓ℎ
𝛤

= 𝛾, 𝛾𝑖 = ∫ℎ𝑖𝜙𝑖
𝛤

=
1

2
ℎ𝑖𝛿𝑖, ∀  𝑖 ∈ 𝛤 (195) 

 where 𝛿𝑖 is the base of function 𝜙𝑖 along 𝛤. For example, in the case of 𝛤2 (where 𝑣 = 𝑣max), we have 

𝛿𝑖 = 𝑦𝑖+1 − 𝑦𝑖−1, and the 𝑦𝑖+1 and 𝑦𝑖−1 are the 𝑦 coordinates of the right and left neighbor of the node 𝑖 

along 𝛤2. This is equivalent to calculating the area of a triangle determined by vertices ℎ𝑖, 𝑦𝑖+1 and 𝑦𝑖−1. 

Once 𝛾 is estimated, we can finalize the vector 𝛽 by taking 
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𝛽𝑖 = 𝛽𝑖 + 𝛾𝑖, ∀  𝑖 ∈ 𝛤 (196) 

for each of the inhomogeneous Neumann boundaries. 

In our implementation, we assume time-invariant (constant) model parameters for simplicity and 

hence the matrix 𝑅 , 𝑄  and 𝑅̃  remain unchanged through time. In practical application where time-

dependent model parameters are assumed, these matrices must be constructed dynamically for each 

time-step.  

3.3.7. Iterative Linear Solvers  

 Because of local support of basis functions, a basis function can interact with at most, including 

itself, seven basis functions. The matrix 𝑆 in (185) can therefore be sparse. To avoid the unnecessary 

memory storage for the zeros, we use sparse matrix implementation provided by GNU Scientific Library 

(GSL) [38]. The linear systems resulted from this problem can be quite large. Traditional direct method 

and simple iterative methods will not work well for this type of applications. Additionally, since the 

matrix 𝑆 in (185) is asymmetric (due to asymmetric 𝐼2  in (188)), the conjugate gradient method, an 

effective method for symmetric positive definite systems, is no longer applicable. Instead, we have 

implemented conjugate gradient squared (CGS) method [ 39 ] and (restarted) generalized minimal 

residual (GMRES) method [40] to solve the linear systems. Interested readers may refer to Kelley’s 

book [41] for details of the two algorithms. In our application, we will primarily use the GMRES solver 

with a trivial preconditioner 𝑀 = (diag(𝑆))
−1

 [42] for its high robustness and efficiency. GSL also 

provides an implementation of the GMRES solver, but currently there is no preconditioners available 

[ 43 ]. Numerical experiments also show that our implementation of GMRES (with the trivial 

preconditioner) converges much faster than the GSL counterpart. 

3.3.8. Interpolation of Numerical Solution 

Numerical solution to the PDE is obtained as an approximate solution vector 𝜔 consisting of the 

nodal values of function 𝑤. To extract a solution for an arbitrary point in the domain, interpolation 
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among the nodal values must be performed. To do this, we convert the point coordinate to a barycentric 

coordinate in a triangle of the mesh. Providing the coordinate (𝑣, 𝑦)  of the point, its barycentric 

coordinates 𝜆0 , 𝜆1 , and 𝜆2  within a triangle can be determined from the three triangular vertices 

((𝑣0, 𝑦0), (𝑣1, 𝑦1), (𝑣2, 𝑦2)), such that 

(
𝜆0
𝜆1
) = (

𝑣0 − 𝑣2 𝑣1 − 𝑣2
𝑦0 − 𝑦2 𝑦1 − 𝑦2

)
−1

(
𝑣 − 𝑣2
𝑦 − 𝑦2

) , 𝜆2 = 1 − 𝜆0 − 𝜆1 (197) 

If 𝜆𝑖 ∈ [0,1] ∀ 𝑖 = 0,1,2, then the point is inside the triangle and the solution can be interpolated by 

𝑤(𝑣, 𝑦) = 𝜆0𝑤(𝑣0, 𝑦0) + 𝜆1𝑤(𝑣1, 𝑦1) + 𝜆2𝑤(𝑣2, 𝑦2) (198) 

3.3.9. Numerical Solution of Vanilla Options 

We attempt to compute the PV as well as the implied volatility (inverted from PV) of vanilla call 

and put using the FEM method along with the boundary conditions described above. The model and the 

FEM PDE parameters used in the experiments are shown in Table 1.  The solution (PV) vectors at 𝑡 = 0 

are obtained for both the call and put option. They are shown as a surface, a function of initial variance 

and initial spot, in Figure 3. The PV of the two products can be interpolated from the two surfaces using 

𝑋0 = 100 and 𝑣0 = 0.12.  

 

Table 1. Model and PDE parameters used for vanilla call and put valuation 

H
es

to
n

 

Initial Spot Price 𝑋0 100 

Initial Variance 𝑣0 0.12 

Mean Variance/Reversion Level 𝜃 0.10 

Mean Reversion Rate 𝜅 2.0 

Volatility of Variance 𝜉 0.4 

Correlation 𝜌 -0.50 

Risk Free Rate/Domestic Rate 𝑟 5% 

Dividend Rate/Foreign Rate 𝑞 3% 

 

Call/Put Strike 𝐾 100 

Option Expiry 𝑇 1Y 

P
D

E
 Variance Resolution 𝑁𝑣 50 

Log Spot Resolution 𝑁𝑦 90 

Temporal Resolution 𝑁𝑡 60 
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Figure 3. Solution surface for the call (left) and the put (right) using parameters in Table 1 

 

 

 The implied volatility as a function of strike is also derived and presented in Table 2. As a 

comparison, we have also calculated the analytic results using 3 different types of Fourier inversion 

method (described in Section 0). It can be seen that numerical results from FEM PDE follow closely 

with the analytic results. The maximal absolute difference is well within 1 basis point. 

Table 2. Implied volatilities: Fourier inversion methods vs FEM PDE 

 Strike Fourier Inversion Method FEM PDE 

 K Heston CDF PDF PV Imp. Vol. 

Put 50 38.47% 38.47% 38.47% 0.3205 38.46% 

Put 60 36.79% 36.79% 36.79% 0.9013 36.78% 

Put 70 35.34% 35.34% 35.34% 2.0649 35.35% 

Put 80 34.09% 34.09% 34.09% 4.0575 34.08% 

Put 90 32.99% 32.99% 32.99% 7.0957 33.00% 

Call 100 32.05% 32.05% 32.05% 13.2184 32.05% 

Call 120 30.56% 30.56% 30.56% 6.0256 30.57% 

Call 140 29.54% 29.54% 29.54% 2.4237 29.55% 

Call 160 28.88% 28.88% 28.88% 0.8948 28.89% 

Call 180 28.51% 28.51% 28.51% 0.3171 28.52% 

Call 200 28.32% 28.32% 28.32% 0.1113 28.32% 

 

3.4. Double Barrier and Double-No-Touch Products 

 Double barrier knock-out options and double-no-touch products share great similarity. They 

differ only in payoff functions (i.e. terminal conditions). For both products, we use again a rectangular 

domain with 𝑣min = 0 and 𝑣max given in (160). Unlike vanilla trades, we set the 𝑦min and 𝑦max of the 
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domain to the upper and lower barrier (log) levels. The treatment of boundary conditions is essential the 

same for both. Specifically, for an up-and-out-down-and-out double barrier call, its boundary conditions 

can be treated as follows 

For  (𝑣, 𝑦) ∈ 𝛤1, 𝑣min = 0 ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = 0 

For  (𝑣, 𝑦) ∈ 𝛤2, 𝑣max = 0 ⟹ 𝐀𝛁𝑤 ∙ 𝐧 = 0 

For  (𝑣, 𝑦) ∈ 𝛤3, 𝑤(𝑡, 𝑣, 𝑦min) = 𝑔 

For  (𝑣, 𝑦) ∈ 𝛤4, 𝑤(𝑡, 𝑣, 𝑦max) = 𝑔 

(199) 

where 𝑔 is a fixed amount of rebate paid upon knock-out event. For boundary 𝛤2, the exact value of 

𝜕𝑤/𝜕𝑣  is difficult to estimate, therefore we simply assume a homogeneous Neumann condition 

𝜕𝑤/𝜕𝑣 = 0  for this boundary, which removes the boundary integral. This assumption appears 

justifiable as vega sensitivity diminishes as volatility approaches to a very large number. With these 

boundary conditions, we can define a function space 

𝑉 = {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 0 on 𝛤3 ∪ 𝛤4} (200) 

The weak form of the PDE is then to find 𝑤 = 𝑢 + 𝑙 for 𝑢 ∈ 𝑉 and 𝑙 ∈ {𝒻 ∈ 𝐻1(𝛺) ∶ 𝒻 = 𝑔 on 𝛤3 ∪ 𝛤4}, 

such that for all 𝜓 ∈ 𝑉 we have 

∫ℛ(𝑢 + 𝑙)
𝛺

= ∫ℛ̃𝑤̃
𝛺

 (201) 

The problem can then be solved accordingly using the FEM method. 

In the following, we will demonstrate some numerical results using the FEM PDE solver. We 

first present the PV benchmarking against analytic solution to confirm the correctness of the 

implementation. Then we show a typical solution surface for a double barrier option using the 

established FEM solver.    

3.4.1. PV Comparison against Analytic Solution 

 We attempt to compute the PV of some sample double barrier options. The model and PDE 

parameters used in the experiments are shown in Table 3. Lipton [44] proposed a (semi-)analytical 
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solution for both double barrier and double-no-touch products in Heston model, however the analytical 

formula exists only if we assume zero correlation 𝜌 = 0.0 and equal rates 𝑟 = 𝑞. Faulhaber’s Excel 

spreadsheet [45], which implements Lipton’s algorithm, is used to compute the benchmark PV for 

comparison. Figure 4 and Figure 5 show the solution (PV) surface at 𝑡 = 0 for the sample barrier call 

and put, respectively. The PV surface is illustrated as a function of initial variance 𝑣0 and initial spot 𝑋0, 

from which we can interpolate the product PV using 𝑣0 = 0.12 and 𝑋0 = 100. 

Table 3. Model and PDE parameters used for double barrier knock-out call and put 

H
es

to
n

 

Initial Spot Price 𝑋0 100 

Initial Variance 𝑣0 0.12 

Mean Variance/Reversion Level 𝜃 0.10 

Mean Reversion Rate 𝜅 1.50 

Volatility of Variance 𝜉 0.50 

Correlation 𝜌 0.00 

Risk Free Rate/Domestic Rate 𝑟 3% 

Dividend Rate/Foreign Rate 𝑞 3% 

T
ra

d
e 

Call Strike 𝐾 100 

Option Expiry 𝑇 1Y 

Lower Barrier  70 

Upper Barrier  130 

Rebate  0.00 

P
D

E
 Variance Resolution 𝑁𝑣 50 

Log Spot Resolution 𝑁𝑦 60 

Temporal Resolution 𝑁𝑡 50 
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Figure 4. Solution surface of the sample barrier call (𝐾 = 100)  

PV comparison: 1.3499 (FEM) vs 1.3501 (Analytic) 

 

 
Figure 5. Solution surface of the sample barrier put (𝐾 = 100) 

PV comparison: 2.7917 (FEM) vs 2.7919 (Analytic) 

 

 Using the same model parameters in Table 3, we have also calculated the PV of barrier options at 

various strike and barrier levels. The PV comparison is shown in Table 4. As can be seen, the PV 

differences between the FEM PDE method and Lipton’s analytic formula are typically quite small. 

Table 4. PV of Double Barrier Options: FEM PDE vs Lipton’s Formula 

Option Strike Lower Barrier Upper Barrier FEM PDE Analytic 

Call 80 60 140 9.5476 9.5499 

Call 85 65 135 5.9997 6.0000 

Call 90 70 130 3.2028 3.2036 

Call 95 75 125 1.2963 1.2969 

Call 100 80 120 0.3090 0.3090 

Call 105 85 115 0.0206 0.0206 

Put 120 60 140 15.6883 15.6854 

Put 115 65 135 10.1213 10.1208 

Put 110 70 130 5.4893 5.4900 

Put 105 75 125 2.2328 2.2334 

Put 100 80 120 0.5297 0.5297 

Put 95 85 115 0.0350 0.0349 

 

A similar PV comparison is also obtained for double-no-touch products at various barrier levels. 

The result is shown in Table 5. The PV differences between the FEM PDE method and Lipton’s analytic 
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formula are negligibly small. Figure 6 displays the solution surface of a double-no-touch with lower 

barrier 70 and upper barrier 130. 

 

Table 5. PV of Double No Touch: FEM PDE vs Lipton’s Formula 

Lower Barrier Upper Barrier FEM PDE Analytic 

60 140 0.5981 0.5982 

65 135 0.4908 0.4909 

70 130 0.3659 0.3660 

75 125 0.2334 0.2335 

80 120 0.1128 0.1128 

85 115 0.0312 0.0312 

 

 

 
Figure 6. Solution surface of a double-no-touch (lower barrier 70 and upper barrier 130) 

PV comparison: 0.3659 (FEM) vs 0.3660 (Analytic) 

 

3.4.2. Crank-Nicolson Oscillation and Remedy 

Terminal conditions in barrier options can be discontinuous, pure Crank-Nicolson scheme time-

stepping may exhibit localized oscillations in solution. To demonstrate this issue, we have temporarily 

disabled the Rannacher time-stepping in our implementation and obtained the solution surface for the 

same sample barrier call. The result is shown in Figure 7, which clearly exhibits kinks at the vicinity of 

the strike. This issue is mitigated by Rannacher time-stepping, with which we end up with a smooth 

surface shown in Figure 4.  
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Figure 7. Solution surface of the sample barrier call (𝐾 = 100) with pure Crank-Nicolson scheme 

PV comparison: 1.3826 (FEM) vs 1.3501 (Analytic) 

 

3.4.3. Barrier Call with Knock-Out Rebate 

Lastly, we employ the FEM solver to value a barrier call option with a rebate payment upon 

knock-out. The restrictions of zero correlation and equal rates have been relaxed and the model 

parameters used in this experiment are shown in Table 6. The solution surface is displayed in Figure 8. 

 

Table 6. Model and PDE parameters for a double barrier with a knock-out rebate 

H
es

to
n

 

Initial Spot Price 𝑋0 100 

Initial Variance 𝑣0 0.12 

Mean Variance/Reversion Level 𝜃 0.10 

Mean Reversion Rate 𝜅 1.25 

Volatility of Variance 𝜉 0.60 

Correlation 𝜌 -0.70 

Risk Free Rate/Domestic Rate 𝑟 5% 

Dividend Rate/Foreign Rate 𝑞 3% 

T
ra

d
e 

Call Strike 𝐾 90 

Option Expiry 𝑇 1Y 

Lower Barrier  85 

Upper Barrier  130 

Rebate  1.00 

P
D

E
 Variance Resolution 𝑁𝑣 50 

Log Spot Resolution 𝑁𝑦 60 

Temporal Resolution 𝑁𝑡 50 
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Figure 8. Solution surface for the double barrier with a knock-out rebate 

 

  



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

66 

 

REFERENCES 
 

1. Clark, I., Foreign Exchange Option Pricing - A Practitioner’s Guide, Wiley-Finance, 2011, pp.82  

2. Shreve, S., Stochastic Calculus for Finance II Continuous-Time Models, Springer Finance, 2004 

3. Wikipage: https://en.wikipedia.org/wiki/Cox–Ingersoll–Ross_model 

4. Janek, A.; Kluge, T.; Weron, R. and Wystup, U., “FX smile in the Heston model,” Chapter 4 in 

Statistical Tools for Finance and Insurance (2nd Ed), Cizek et al. (eds.), Springer-Verlag, 2011. 

5. Clark, I., Foreign Exchange Option Pricing - A Practitioner’s Guide, Wiley-Finance, 2011, pp.98  

6. Dragulescu, A. and Yakovenko, V., Probability distribution of returns in the Heston model with 

stochastic volatility, Quantitative Finance 2: 443–453. 2002  

7. del Bano Rollin, S.; Ferreiro-Castilla, A.; Utzet, F., On the density of log–spot in the Heston 

volatility model, Stoch. Process. Appl. 120, 2037–2063 (2010) 

8. Wikipage: https://en.wikipedia.org/wiki/Fourier_transform 

9. Wikipage: http://en.wikipedia.org/wiki/Characteristic_function_(probability_theory) 

10. Duffie, D., Dynamic Asset Pricing Theory, 3rd Ed, Princeton University Press, 2001, pp.180 

11. Wu, L., Chapter 3 Modeling Financial Security Returns Using Lévy Processes, pp.150, in 

“Handbooks in Operations Research and Management Science, Vol 15, Financial Engineering” 

edited by Birge, J. and Linetsky, V., Elsevier Science, 2008 

Online resource: http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf 

12. Online resource: http://www.math.nus.edu.sg/~matsr/ProbI/Lecture6.pdf 

13. Schmelzle, M., Option Pricing Formulae using Fourier Transform: Theory and Application, 2010, 

pp.10, Online resource: http://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf  

14. Elices, A., Models with Time-Dependent Parameters using Transform Methods: Application to 

Heston’s Model, “Appendix A: Deriving the Characteristic Function”, arXiv.org, Oct. 20, 2008 

Online resource: http://arxiv.org/ftp/arxiv/papers/0708/0708.2020.pdf 

15. Albrecher, H.; Mayer, P.; Schoutens, W. and Tistaert, J., The little Heston trap, Wilmott Magazine, 

January 2006: 83–92. 231–262. 

16. Wu, L., From Characteristic Functions and Fourier Transforms to PDF’s-CDF’s, online resource: 

http://faculty.baruch.cuny.edu/lwu/890/ADP_Transform.pdf 

17. Wu, L., Chapter 3 Modeling Financial Security Returns Using Lévy Processes, pp.149, in 

“Handbooks in Operations Research and Management Science, Vol 15, Financial Engineering” 

edited by Birge, J. and Linetsky, V., Elsevier Science, 2008 

Online resource: http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf 

18. Wu, L., Chapter 3 Modeling Financial Security Returns Using Lévy Processes, pp.150, in 

“Handbooks in Operations Research and Management Science, Vol 15, Financial Engineering” 

edited by Birge, J. and Linetsky, V., Elsevier Science, 2008 

Online resource: http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf 

 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

67 

 

 

19. Wu, L., Chapter 3 Modeling Financial Security Returns Using Lévy Processes, pp.152, in 

“Handbooks in Operations Research and Management Science, Vol 15, Financial Engineering” 

edited by Birge, J. and Linetsky, V., Elsevier Science, 2008 

Online resource: http://faculty.baruch.cuny.edu/lwu/papers/handbooklevy.pdf 

20. Schmelzle, M., Option Pricing Formulae using Fourier Transform: Theory and Application, 2010, 

pp.24, Online resource: http://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf 

21. Schmelzle, M., Option Pricing Formulae using Fourier Transform: Theory and Application, 2010, 

pp.17, Online resource: http://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf 

22. Elices, A., Models with Time-Dependent Parameters using Transform Methods: Application to 

Heston’s Model, arXiv.org, Oct. 20, 2008 

Online resource: http://arxiv.org/ftp/arxiv/papers/0708/0708.2020.pdf 

23. F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political 

Economy, pp. 637-654, 1973 

24. Heston, S., A closed-form solutions for options with stochastic volatility, Review of Financial 

Studies, 6, 327–343, 1993 

25. Topper, J. Financial Engineering with Finite Elements, Wiley Finance Series, 2005 

26. Winkler, G.; Apel, T.; Wystup, U., Valuation of options in Heston's stochastic volatility model 

using finite element methods, in J. Hakala, U. Wystup (eds.) Foreign Exchange Risk, Risk Books, 

London, 2002 

27. Achdou, Y.; Tchou, N., Variational analysis for the Black-Scholes equation with stochastic 

volatility, ESAIM: Mat. Mod. and Num. Analysis, 36/3, 373-395,  2002 

28. Miglio, E.; Sgarra, C., A Finite Element Framework for Option Pricing with the Bates Model, 

Computing and Visualization in Science, in publish, 2009  

29. Andersen and Piterbarg 2010 - Interest Rate Modeling, ch. 2.5.1 page 58 

30. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.27 

31. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.29 

32. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.32 

and pp.74 

33. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.32 

34. Wikipage: https://en.wikipedia.org/wiki/Galerkin_method  

35. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.57  

36. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.91  

37. Gockenbach, M., Understanding and Implementing the Finite Element Method, SIAM, 2006, pp.74 

38. Online resource: https://www.gnu.org/software/gsl/doc/html/spmatrix.html 

 



 
Changwei Xiong, April 2020   https://modelmania.github.io/main/                    

68 

 

 

39. Online resource: http://www.netlib.org/templates/matlab/cgs.m 

40. Online resource: http://www.netlib.org/templates/matlab/gmres.m 

Online resource: http://www.netlib.org/templates/matlab/rotmat.m 

41. Kelley, T., Iterative Methods for Linear and Nonlinear Equations, SIAM, 1987 

42. Wikipage: https://en.wikipedia.org/wiki/Preconditioner 

43. Online resource: https://www.gnu.org/software/gsl/doc/html/splinalg.html 

44. Lipton, A., Mathematical Methods for Foreign Exchange, World Scientific, 1st  Edition, 2001. 

45. Faulhaber, O., Analytic methods for pricing double barrier options in the presence of stochastic 

volatility, Master's thesis, Mathematics Department, University of Kaiserslautern, Germany, 2002 


	Abstract
	Table of Contents
	1. Kolmogorov Forward and Backward Equations
	1.1. Kolmogorov Forward Equation
	1.2. Kolmogorov Backward Equation

	2. Heston Model
	2.1. Heston Stochastic Volatility Model
	2.1.1. Market Price of Risk
	2.1.2. Radon-Nikodym Derivative
	2.1.3. Feller Condition

	2.2. Probability Distribution of Spot Returns
	2.2.1. Derivation of the Transition Probability
	2.2.2. Moment Generating Function (in progress…)

	2.3. Analytical Solution of Vanilla Options
	2.3.1. Fourier Transform
	2.3.2. Levy’s Inversion Formula
	2.3.3. Characteristic Function
	2.3.4. Vanilla Option Prices
	2.3.4.1. Analogy to Cumulative Density Function
	2.3.4.2. Analogy to Probability Density Function
	2.3.4.3. Heston’s Original Solution


	2.4. Piecewise Time Dependent Heston Model
	2.5. Forward Equation

	3. Heston Model: PDE by Finite Element Method
	3.1. The Partial Differential Equation
	3.2. Temporal Discretization
	3.3. Finite Element Method in 2D
	3.3.1. Weak Formulation
	3.3.2. Terminal Conditions
	3.3.3. Boundary Conditions
	3.3.3.1. Homogeneous Dirichlet Boundary Condition
	3.3.3.2. Homogeneous Neumann Boundary Condition
	3.3.3.3. Inhomogeneous Dirichlet Boundary Condition
	3.3.3.4. Inhomogeneous Neumann Boundary Condition

	3.3.4. Boundary Conditions for Vanilla Options
	3.3.5. Mesh and Basis Functions
	3.3.6. Stiffness Matrix and Load Factor
	3.3.6.1. Computation of Integrals

	3.3.7. Iterative Linear Solvers
	3.3.8. Interpolation of Numerical Solution
	3.3.9. Numerical Solution of Vanilla Options

	3.4. Double Barrier and Double-No-Touch Products
	3.4.1. PV Comparison against Analytic Solution
	3.4.2. Crank-Nicolson Oscillation and Remedy
	3.4.3. Barrier Call with Knock-Out Rebate


	References

