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Kolmogorov Forward & Backward Equation

Multidimensional SDE
dXt == A(t, Xt)dt + B(t, Xt)thl pdt = thth,

p(t, x|s, @) is the transition probability density function having X; = x at t given
X;=aatsfors <t

Forward PDE (a.k.a Fokker-Planck equation)
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Backward PDE
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General Dupire Local Vol — Part 1

* Spot dynamics, volatility n, takes a general form

dx ~
X_tt = pedt + nedWe, U =1 — q¢

* European call price

Ct,K = IES[DS,t(Xt - K)+] = Es[Ds,t(Xt - K)@(Xt - K)]

ek = _E,[Dy,0(X; — K]
2
Pt~ Dy, 8(X, — K)] = Es[Ds|Xe = K]ES[5CX, — K]

The last equality comes from Bayes’ rule

* Heaviside step function and Dirac delta function

0, x<0 o
0 =41/2 x=0, 0() = [, s(du, () ="
1, x>0

oo, x=0

5(x) = {0’ 0 subject to ffooo S(wdu=1

Analogous to the CDF and PDF of a normal distribution with zero mean and
infinitesimal variance



General Dupire Local Vol — Part 2 (Ch 3.2)

Dynamics of payoff function (not a smooth function; applying Ito-Tanaka formula)

1
d(Ds,e(Xe = K)*) = =D (Xe = K)*dt + Dy e O(X, — K)dX, + 5 Dse8(Xe — K)(dX,)?

Take expectation of both sides
0Crk E d(Ds(X; — K)*)
at  ° dt

1
= [Eg [Ds¢ _rt(Xt - K)O(X; — K) + uX;.0(X; — K) + EXtZUg5(Xt - K))]

1
= Es[Ds,t(rtK — q: X )O(X, — K)] + EEs[Ds,tXtZU§5(Xt - K)]
1
= KEs|Ds,er:0(X, — K)| = Es|Ds,eqe X O(X, — K)] + 2 K*Eg| D em | X, = K| Es[8(X, — K]

Finally
ac
[Es[Ds,tﬂﬂXt:K] _ atéK_KEs[Ds,trte(Xt_K)]+[Es[Ds,tCItXt@(Xt_K)]
Es|[Ds ¢|Xe=K] 1K262€t2,1<
2" 9K

If we write the volatility term n; as a pure local volatility g(t, X;), which is a deterministic
function of X;

ac
o Es[Dstm?|Xe=K] _ att'K—K[Es[Ds,tTt@(Xt—K)]+Es[Ds,tCItXt@(Xt—K)]

gtk = Es|Ds¢|Xe=K]|

,0%Ce K

1
2 dK?2



Relationship to Classic Dupire Local Vol (Ch 4.2 & 4.3)

Assuming deterministic rates 7, and g;, we get the Classic Dupire local vol

act'K . aCth _
f2 . ]E [ 2|X . K] __ ot +ﬂtK 0K +tht,K
tk = LBsllelde = B] = L 0%Cik
20 K2

Dupire local variance = Conditional expectation of the (stochastic) variance

Difference f3; x between the general Dupire local volatility g(t, X;) and the classic
Dupire local volatility £(t, K)

Es[Ds ¢(qt—qe) Xe®(Xe—K)|-KEg[Ds ¢ (re—7e) O (X¢—K) |

ZaZCtK
oK?2

— 2 2 _
Bex = 9tk — Stk = )
2

the spread f3; x becomes zero if the rates r; and g, are deterministic

The general Dupire local vol is constructed on a time and strike 2D grid, which can
be calibrated by estimating the two expectations along with the readily available
classic Dupire local vols

Next, we assume Hull-White model for the stochastic rates and general Dupire local
vol for the spot process, and attempt to estimate the two expectations numerically



Local Vol Model with Stochastic Rates (Ch 2)

e 3-Factor model: Hull White model for rates, general local vol for spot
re=fse + fst byt Bu,cdu + x;
e = [} ButdWyy,  dx, = —Agxdt + opdWy,
o= for+ fst byt Bupdu + %
Xy = — fst P2 Bt Guydu + fst PucdWoy, dZe = —(p736:9ey + AeZe)dt + 6,dWy,
dy: = (Tt — iy — %gtz,y) dt + geydWsye,  dW;edW;, = Pijdt

* The x¢, X; and y; are the state variables

* Define discounted transition probability density function
" “ " “ t
h(t, X, X, yls! Xs) Xs) ys) = DS,tp(t» X, X, ylsr Xs)Xs) ys)» DS,t = exp (_ fs Tudu)

Dg ; is not a function of any of the state variables

* Next, we briefly review the Hull-White model and then derive the forward PDE, i.e. Fokker-
Planck equation, for the model



1-Factor Hull-White Model (Ch 2)

1-Factor Hull White model for both domestic and foreign rates

t t
1= for + I buchucdu+xe,  xp = [ BucdWay,  dx = —Ax dt + o, dW,
—e~AMt-w)

—A(t- _rt _1
Pur =€ (¢ u)au: by, = fu Puydv = y)

Oy
P ¢ is the volatility of the instantaneous forward rate f;, ¢
by, ¢ is the volatility of the zero coupon bond P, ;

Writing the model in the most familiar form, it will be

dry = A(6; —rp)dt + o, dWy, 0y = for + %agst't + %f; Bt rdu

In practical applications, it usually takes a time-invariant mean reversion rate A along
with a (deterministic) piecewise constant short rate volatility g,

The model can calibrate to caplets or to co-terminal swaptions (via Jamshidian
decomposition) knowing that a forward starting zero coupon bond under T-forward measure
is a lognormal martingale (usually fix A while calibrating o;)

P P t b2, —b2 t
Pery = S = 2% exp (_ J. %du - fs (bu,v - bu,T)qu)

Per Pgr S

2
- (_ [ Guybur) g, Ji(byy — bu,T)quT>' AW, = dW, + by rdu

PgrT S 2



Calibration by Forward PDE (Ch 3.1 & Ch 4.1.2)

e Forward PDE

~ L1
a((Pgsatgt,y"'/ltft)h) a((rt_rt_ggg,y)h) 19%(afh) |, 10%(8¢n)

oh d(Aex¢h)
— = —rh -
dat t 0x + 0x dy 2 0x2 2 0x2
+ 1 02 (gZyh) + 9%(pt?acaen) | 0%(pi’orgeyh) | 9%(pi Begryh)
2 0y? 0x0X 0x0y 0x0y

ltim h(t,x, %, y|s, x5, X5, Vs) = 0(x — x5, X — X5, Y — Vs)
>s

 The 3D PDE can be solved by Alternating Direction Implicit (ADIl) method

 Steps of calibrating general Dupire local vol g(t,y)
« Start from t,, using g(ty,y) = &(ty,y) and 3D Dirac delta function for h(t,)

* For each time step from t; to t;, 1, use forward PDE to evolve the density from h(t;) to
h(t;,,), using the previously calculated g(t;, y)

* Use the resulting h(t;,,) at t; 4 to compute the adjustment S (t;,1,y), basically
evaluate the two expectations in the numerator

* Use the computed adjustment S (t;,4,y) along with the classic Dupire local volatility
¢(t;+1,y) to compute the general local volatility g(t; .1, y) for the next time interval
from t;, 4 to t;4-

* Repeat steps 2 to 4 until we have evolved the density function all the way to maturity



Pricing by Backward PDE

* The pricing is done through solving the backward PDE using the general Dupire
local volatility, along with proper terminal conditions and boundary conditions

v ov 23 A A o\ OV ~ 1 o oV ofd%v
ET rV + Aex; P (Pt OtGty t Atxt) e (Tt — T — Egt,y) oy 2 oax?
G202V gty d Vv 1, 23 A 92V

~ 0V 13 oV _ oV
2 9x2 2 9y2 Pt 0t0t 5,55 — Pt OtIty dx0y Pt OtGty 9%y

e Again, this can be solved by ADI method



Stochastic Local Vol with Stochastic Rates (Ch 5)

4 Factor model: assuming stochastic local vol for spot process. The stochastic
volatility component is driven by another stochastic process z;

.1
dy; = (Tt — T — 577?) dt + nedWse, N = VeyWtz
dZt - at,zdt ~+ bt’de4,t

Local vol component y; ,, can be derived as

]Es[Ds,tU%b’t:k] — ]Es[Ds,tVtz,ylpg,ZWt:k] — .2 [Es[Ds,tllj%,ZWt:k]
Es[Ds,t|ye=K] Es[Ds.t|ye=K] Lk Eg [Ds t|ye=K]
2 IE:S[l)S t|Yt k] _ 2 f_Q h(t,x,f,y=k,ZlS,xs,fs,yS,Zs)d.Q.
= Vitk = gt k tk P ” 2
E [Ds tlptzb’t k] f_Q h(t»x»x»y—k»le»xs»xs»YS:Zs)lpt,zd-Q

Calibration can be challenging: PDE method is basically infeasible for 4-Factor
model

In order to calibrate y; ,, for each time step, we must estimate 4 expectations using
Monte Carlo method

» Two for gZ;: Eg|Ds 10X, — K)| and E¢[ D5 1 q, X0 (X, — K)]
* Two as above: E [Dst|yt k] and E [DS t¢§Z|yt k]

The first two expectation is relatively straight forward to calculate. The second
two are conditional expectations, which may need special treatment
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