
1

Davis-Lo Credit Contagion Model: Theory, Implementation and Calibration

A final project report for the course

“Credit Risk Modeling”

Submitted

by

Changwei Xiong

December 2009

2

ABSTRACT

Correlation of defaults in a credit portfolio plays a very important role in portfolio

performance. In this report, a fully dynamic contagion correlation model, known as Davis-Lo

model, is implemented and calibrated to market tranche quotes. Davis-Lo model describes the

dependency of defaults through “infection” such that any bond may default either directly or may

be infected by any other defaulting bond. Both Monte Carlo simulation method and Markov

chain generator method are applied to compute the distribution of the number of defaults in a

fixed time. A numerical optimization routine is used to find the optimal values for the model

parameters that minimize the tranche quotes residues between the modeled and the market data.

3

TABLE OF CONTENTS

1. Introduction ... 4

2. Tranche Pricing with Enhanced Risk Model .. 4

2.1 Davis-Lo Dynamic Contagion Model ... 4

2.2 Default Distribution Function ... 6

2.3 Matrix Exponentiation Method ... 6

2.4 Monte Carlo Simulation Method .. 8

2.5 Tranche Pricing ... 9

3. Calibration to Market Data ... 10

3.1 Summary of Market Data.. 10

3.2 Demonstration of Correctness ... 11

3.3 Calibration to Tranche Quotes .. 13

4. Conclusions ... 18

REFERENCES ... 20

4

1. Introduction

 Many correlation models have been proposed to address the default correlation. The first

attempt by Duffie and Singleton [1] in 1998 uses the correlated dynamics of the intensity process

to induce default correlation. However realistic default correlations are impossible with typical

normal or lognormal dynamics. To overcome this issue, Duffie and Garleanu [2] proposed an

affine jump diffusion model, which combines normal, lognormal, or square-root diffusive

intensity process with jumps. However this approach was not widely adopted as it relies on a

slow Monte Carlo implementation. In 2001, Davis and Lo [3] published their infectious default

model, which is believed to be the first contagion model. In this model, an issuer can default

either idiosyncratically or by being infected by the default of another issuer according to some

infection probability. The strength of the default correlation in this model is controlled by the

infectious probability. Since this model only allows one step of contagion, Davis and Lo [4]

proposed another dynamic model to relax this constraint. This is the model the project is going to

implement and calibrate against market quotes. A detailed explanation of the model will be

present in the next section.

2. Tranche Pricing with Enhanced Risk Model

2.1 Davis-Lo Dynamic Contagion Model

 Davis and Lo [4] proposed a simple dynamic risk model to address the correlation of

defaults in a portfolio of credits. The basic idea is that a default of a credit in a certain industry

sector may trigger off defaults of other credits in the same sector or even the inter-sectors. The

correlation among the defaults of the credits plays a significant role in the process. Let’s consider

a simple portfolio of credits which consists of ݊ independent credits each having a default time

that follows an exponential distribution with a parameter ߣ. Any one credit in the portfolio will

5

have a default probability, ൌ 1 െ ݁ିఒ், in a time interval ܶ. The number of defaults in the

portfolio in time ܶ follows a binominal distribution, Binomial(n, p). The expected number of

defaults in the interval [0, t] is ܧሾ ௧ܰሿ ൌ ݊ ൌ ݊ሺ1 െ ݁ିఒ௧ሻ , where ݊ is the initial number of

credit names in the portfolio. We define a process:

௧ܯ ൌ 	 ௧ܰ െ න ሺ݊ߣ െ ௨ܰሻ݀ݑ
௧

 (1)

Because:

|௧ܯሾܧ ௦࣠ሿ ൌ ௧ܯሾܧ	 െ |௦ܯ ௦࣠ሿ |௦ܯሾܧ ௦࣠ሿ ൌ ௧ܯሾܧ െܯ௦| ௦࣠ሿ ௦ (2)ܯ

And since ܯ௧ െܯ௦ is independent of the filtration ௦࣠ and

௧ܯሾܧ െ |௦ܯ ௦࣠ሿ ൌ ௧ܯሾܧ െ ௦ሿܯ ൌ ሾܧ ௧ܰሿ െ ሾܧ ௦ܰሿ െ න ሺ݊ߣ െ ሾܧ ௨ܰሿሻ݀ݑ
௧

௦
ൌ 0 (3)

The stochastic process ܯ௧ is a martingale, and hence we have:

ܲሾdefault in	ሾݐ, ݐ |ሿݐ݀ ௧ܰሿ ൌ ሾ݀ܧ ௧ܰ| ௧ܰሿ ൌ ሺ݊ߣ െ ௧ܰሻ݀(4) ݐ

This is the hazard rate, which is proportional to the number of names having survived up to time

 With the hazard rate defined above, the default process of the portfolio can be simulated by .ݐ

generating successive jump times of ௧ܰ , denoting these ଵܶ, ଶܶ, ⋯ . Thus the time intervals,

ܶାଵ െ ܶ, follows an exponential distribution with a parameter ߣሺ݊ െ ݅ሻ. A further improvement

can be done by introducing some interaction effects. In the real market, there exists a common

effect that, when a default occurs, credit spreads for other names are elevated to some level and

then settled back to normal levels after some time. In mathematical terminology, the process is

described as follows: initially, the process starts from a ground state, each name has hazard rate

of ߣ and the total hazard rate is ݊ߣ. When a default occurs, the hazard rate is elevated to an

excited state by a factor ܽ 1 for all remaining names and the elevated total hazard rate is

6

ܽሺ݊ െ 1ሻߣ. The excited state lasts for a random time exponentially distributed with a parameter

 .then reverts to ground state until next default occurs ,ߤ

2.2 Default Distribution Function

 Given the parameters, ߣ ߤ , and ܽ , we are able to construct the default distribution

function:

,ሺ݅ߨ ሻݐ ൌ ܲሾ ௧ܰ ൌ ݅ሿ (5)

at different time horizons. This function is the basis for tranche pricing and can be evaluated

either by Monte Carlo simulations or by direct matrix manipulations through Markov chain

generator.

2.3 Matrix Exponentiation Method

Note that the default counting process ௧ܰ is a piecewise-deterministic Markov process

with state space ܧ ൌ ሼሺ݅, ݆ሻ ∶ 	݅ ൌ 0,1	and	݆ ൌ 0,1,⋯ , ݊ሽ. It can be modeled as a continuous-time

Markov chain with generator matrix ܣ௧ , where ܣ௧ ൌ ሼܽሺݐሻሽ,ୀ
 . The generator matrix ܣ௧

(notes that its indices start from 0) has ሺ݊ 1ሻ ൈ ሺ݊ 1ሻ elements and its off-diagonal elements

provide state transition probabilities for infinitesimal time intervals ݀ݐ (for ݆ ് ݅):

ܲሾ ௧ܰାௗ௧ ൌ ݆| ௧ܰ ൌ ݅ሿ ൌ ܽሺݐሻ݀(6) ݐ

Let’s define a matrix ܳ ൌ ሼݍሺݐ, ܶሻሽ,ୀ
 to account for finite-time transition probabilities whose

row index denotes the number of defaults at start time and column index denotes the number of

defaults at end time:

,ݐሺݍ ܶሻ ൌ ܲሾ்ܰ ൌ ݆| ௧ܰ ൌ ݅ሿ (7)

The probability matrix ܳ and the generator ܣ satisfies the forward equation:

7

߲ܳሺݐ, ܶሻ

߲ܶ
ൌ ܳሺݐ, ܶሻ ∙ ௧ (8)ܣ

In Davis-Lo model, the generator matrix ܣ௧ ൌ ܣ is constant. Given ௧ܰ is a piecewise-

deterministic Markov process, the forward equation can be solved as:

,ଵݐሺݍ ଶሻݐ ൌ ൫݁ሺ௧మି௧భሻ൯

 (9)

If ܣ௧ is a function of time, the exponential term in the above equation need be evaluated as

ሺݐଶ െ ܣଵሻݐ ൌ ݏ௧݀ܣ
௧మ
௧భ

. (10)

 In the context of Davis-Lo model, each element of generator matrix ܣ ൌ ሼܽሽ,ୀ
 is a

ሺ2 ൈ 2ሻ sub-matrix, which accounts for the paths through 2 different states (ground and excited

state). The main diagonal elements are:

ܽ ൌ
െߣሺ݊ െ ݅ሻ 0

ߤ െߤ െ ሺ݊ߣܽ െ ݅ሻ൨ , ݅ ൌ 0,⋯ , ݊ െ 1 (11)

and ܽ ൌ ቂ0 0
0 0

ቃ for the last. The adjacent off-diagonal elements are:

ܽ,ାଵ ൌ
0 ሺ݊ߣ െ ݅ሻ
0 ሺ݊ߣܽ െ ݅ሻ൨ , ݅ ൌ 0,⋯ , ݊ െ 1 (12)

All the remaining elements of ܣ are then ቂ0 0
0 0

ቃ. Given the generator matrix, the solution to the

forward equation (8) is ܳሺݐ, ܶሻ. Similar to matrix ܣ, its elements are ሺ2 ൈ 2ሻ sub-matrices:

,ݐሺݍ ܶሻ ൌ ൫݁ሺ்ି௧ሻ൯

	, ݅, ݆ ൌ 0,⋯ , ݊ (13)

Let’s denote the indices of the sub-matrix as ݇, ݈ ∈ ሼ0, 1ሽ, each element in the sub-matrix has a

probabilistic meaning:

ቀݍሺݐ, ܶሻቁ

ൌ ܲሾ்ܰ ൌ ݆, ்ܵ ൌ ݈| ௧ܰ ൌ ݅, ܵ௧ ൌ ݇ሿ (14)

8

where ܵ denotes the state with 0 for ground state and 1 for excited state. Since we eventually

want to evaluate the default distribution function ߨሺ݆, ሻݐ ൌ ܲሾ ௧ܰ ൌ ݆ሿ , considering that the

process starts only from a ground state, this is equivalent to:

,ሺ݆ߨ ሻݐ ൌ ܲሾ ௧ܰ ൌ ݆ሿ

													ൌ ܲሾ ௧ܰ ൌ ݆, ܵ௧ ൌ 0| ܰ ൌ 0, ܵ ൌ 0ሿ ܲሾ ௧ܰ ൌ ݆, ܵ௧ ൌ 1| ܰ ൌ 0, ܵ ൌ 0ሿ

													ൌ ቀݍ,ሺ0, ሻቁݐ
,
 ቀݍ,ሺ0, ሻቁݐ

,ଵ

(15)

Detailed explanation and implementation of the generator matrix have been discussed by

Arnsdorf and Halperin [5].

2.4 Monte Carlo Simulation Method

 Monte Carlo method is very straightforward to evaluate the default distribution function

,ሺ݅ߨ ሻݐ . We at first evenly subdivide the time horizon ܶ into ࣧ steps, ݐ, ݅ ൌ 1,⋯ ,ࣧ and

ݐ ൌ 0, with increment ݀ݐ ൌ ܶ/ࣧ. Simulation starts with default counting number ܰ ൌ 0 and

௫ݐ ൌ ௫ݐ ௫ is the end time of excited state. The initial value forݐ , whereݐ ൌ , which meansݐ

the simulation starts from a ground state. For each time step ݐ, ݅ ൌ 1,⋯ ,ࣧ , we evaluate

݄ ൌ ൫݊ߣܿ െ ௧ܰషభ൯ ∙ ܿ with ݐ݀ ൌ 1 if ݐ ൏ ܿ ௫, orݐ ൌ ܽ otherwise. If ݄ ܷሺ0,1ሻ, where ܷሺ0,1ሻ

is a uniform random variable between 0 and 1, default occurs, we then set ௧ܰ ൌ ௧ܰషభ 1 and

set the ݐ௫ ൌ ݐ Θሺߤሻ , where Θሺߤሻ is an exponentially distributed random number with

parameter ߤ. We simulate Θሺߤሻ by use of its inverse cumulative distribution function, which

takes a ܷሺ0,1ሻ random variable and gives:

Θሺߤሻ ൌ
െ݈݊ሾ1 െ ܷሺ0,1ሻሿ

ߤ
 (16)

9

We repeat performing the above simulation for ࣥ trials, then count the total number of

occurrences for ௧ܰ ൌ ݇ at time ݐ, denoting this as ܥ,௧. The default distribution function can

therefore be constructed as:

,ሺ݇ߨ ሻݐ ൌ ܲൣ ௧ܰ ൌ ݇൧ ൌ
ೖ,
ࣥ

 (17)

To approximate ߨሺ݇, ,ሺ݇ߨ we will take ,ݐ ሻ at an arbitrary timeݐ ݐ ሻ atݐ nearest to ݐ. As ࣧ is

sufficiently large, the error is negligible.

2.5 Tranche Pricing

 Tranche pricing of a credit portfolio is based on the default distribution function ߨሺ݇, .ሻݐ

In the following, recovery rate ܴ and risk free rate ݎ are assumed constant for all names in the

portfolio. We now consider the default leg. The default leg pays out the tranche loss amount at

the time of the loss. The default leg ܮܦ of a tranche is given by:

ܮܦ ൌ න ,ሺ0ܤ ሻݐ ∙ ሾെ݀ܮܧሺݐ, ,ௗܭ ௨ሻሿܭ
்

ൎ

ሺܤ ܮܧିଵሻሺܤ െ ିଵሻܮܧ
2

ெ

ୀଵ

 (18)

where the sum runs over all coupon dates, ݐ, ݅ ൌ 1,⋯ ܤ and ,ܯ, ൌ ,ሺ0ܤ ሻݐ ൌ exp	ሺെݎ ∙ ሻ isݐ

the risk-free discount factor, ܭௗ and ܭ௨ are the tranche attachment and detachment point. In the

above equation, the tranche expected loss function is ܮܧ ≡ ௧ܮܧ ൌ ॱሾܮሺݐ, ,ௗܭ ௨ሻሿ and is givenܭ

by:

ॱሾܮሺݐ, ,ௗܭ ௨ሻሿܭ ൌ ॱ ቈ
ሺࣦሺݐሻ െ ௗሻାܭ െ ሺࣦሺݐሻ െ ௨ሻାܭ

௨ܭ െ ௗܭ
 (19)

where ࣦሺݐሻ ൌ ሺ1 െ ܴሻ ∙
ே

. Given the default distribution function ߨሺ݇, ሻ, we can calculate theݐ

expectation in the above equation by:

10

ॱሾܮሺݐ, ,ௗܭ ௨ሻሿܭ ൌ ቌ
1 െ ܴ
௨ܭ െ ௗܭ

∙ ቈ൬
݇
݊
െ ௗ൰ܭ

ା

െ ൬
݇
݊
െ ௨൰ܭ

ା

 ∙ ,ሺ݇ߨ ሻቍݐ

ୀ
 (20)

The premium leg ܮܦ, on the other hand, paid by the protection buyer to the protection

seller, is given by:

ܮܲ ൌ ܵሺܭௗ, ௨ሻܭ ∙ ܣܴ

							ൌ ܵሺܭௗ, ௨ሻܭ ∙∆ ቌܤ ∙ ܧ ܰ െ න
ݑ െ ିଵݐ
ݐ െ ିଵݐ

௧

௧షభ

∙ ,ሺ0ܤ ሻݑ ∙ ,ݑሺܰܧ݀ ,ௗܭ ௨ሻቍܭ

ெ

ୀଵ

							ൎ ܵሺܭௗ, ௨ሻܭ ∙∆ܤ
ܧ ܰିଵ ܧ ܰ

2

ெ

ୀଵ

(21)

where ܵሺܭௗ, is the risk annuity, ∆ ܣܴ ,௨ሻ is the tranche par spreadܭ is the day count fraction

between ݐିଵ and ݐ and

ܧ ܰ ≡ ܧ ௧ܰ ൌ ॱሾ1 െ ,ݐሺܮ ,ௗܭ ௨ሻሿܭ ൌ 1 െ (22)ܮܧ

is the expected tranche outstanding notional at time ݐ.

 The tranche par spread, ܵሺܭௗ, ܮܦ ௨ሻ, is determined from the par equationܭ ൌ Most .ܮܲ

index quotes are given in terms of the par spread. For the equity tranche, however, the market

convention is to charge an upfront payment from the protection buyer while fixing the running

spread at 500 bps.

3. Calibration to Market Data

3.1 Summary of Market Data

 The purpose of calibration is to determine the optimal estimations of the model

parameters that fit the model to the market tranche quotes. The model is calibrated against 5-year

tranche quotes (from 05/15/2009 to 12/20/2013) for a portfolio of 125 names. The time period

11

spans approximately ܶ ൌ 4.6 years and the coupon payment date is ݐଵ ൌ 0.1 and ݐ ൌ ଵݐ

0.25ሺ݅ െ 1ሻ for ݅ ൌ 2,⋯ ,18. The recovery rate is assumed to be 30% for all names while the risk

free rate ݎ ൌ 0.05. Each name has its own 5-year clean spread ܵ . The hazard rate ߣ is then

estimated by the credit triangle relationship as:

ߣ ൌ
1
125

 ܵ

1 െ ܴ

ଵଶହ

ୀଵ
ൌ 0.048153 (23)

3.2 Demonstration of Correctness

 One simple way to demonstrate the correctness of the implementation is to compare the

default distribution function ߨሺ݇, ሻ generated by Matrix Exponentiation method and by Monteݐ

Carlo simulations. The figures below show the excellent agreement between the two methods. In

the demonstration, ܴ ൌ 0.3, ܶ ൌ ݎ ,4.6 ൌ ߣ ,0.05 ൌ 0.048153, the number of Monte Carlo trials

is 400,000 and the number of time steps is 2,000. The following figures are generated from

various ߤ and ܽ values, in which red bars represent the results from Monte Carlo simulations and

blue bars represent that from Matrix Exponentiation method.

F
M

F
M

Figure 1. D
Monte Carlo

Figure 2. D
Monte Carlo

efault distri
o method (re

efault distri
o method (re

ibution func
d) and Matri

ibution func
d) and Matri

12

ction (Portfo
ix Exponent

ction (Portfo
ix Exponent

olio loss fun
tiation metho

olio loss fun
tiation metho

nction) gene
od (blue).

nction) gene
od (blue).

erated by

erated by

F
M

3.3 Calib

 T

detachme

mathema

optimal e

quotes an

߳ଶ

where ܵ

ܷ ܲௗ

payment

upfront p

Figure 3. D
Monte Carlo

bration to Tra

The market

ent/attachme

atical termin

estimations f

nd the marke

ଶ ൌ ൬1 െ
∈ாொ

 is the tran

ൌ ܮܦ െ 0.0

is greater t

payment is ze

efault distri
o method (re

anche Quote

data provid

ent points d

nology, calib

for the mode

et quotes is m

െ
ܷ ܲௗ

ܷ ܲ௧
൰

nche par sp

05 ∙ ܳܧ ,ܣܴ

than zero, a

ero.

ibution func
d) and Matri

es

des the quo

defined as

bration of th

el parameters

minimized. T

൰
ଶ

 ൬1
∈ௌா

pread, ܷܲ is

 denotes the

and ܵܧ denot

13

ction (Portfo
ix Exponent

otes for 6

(0%, 3%,

he model to

s ߤ and ܽ su

The residual

െ
ܵௗ

ܵ௧
൰

s the tranch

e collection o

tes the colle

olio loss fun
tiation metho

tranches o

7%, 10%,

market data

uch that the r

߳ is defined

൰
ଶ

he upfront

of equity tra

ection of se

nction) gene
od (blue).

of the credi

15%, 30%

a is equivale

residual betw

d as follows:

payment an

anches whos

enior tranche

erated by

it portfolio

and 100%

ent to findin

ween the mo

nd compute

se market up

es whose m

with

%). In

ng the

deled

(24)

ed as

pfront

market

14

 To ensure the model parameters is constrained by ߤ 0 and ܽ 1, two new variables

are introduced such that ߤ ൌ max	ሺݔଶ, ܽ ሻ andߝ ൌ 1 is a very small number and ߝ ଶ, whereݕ

usually takes 1e-10 to prevent division by zero. Unconstrained optimization procedures can now

be used to find optimal values for ݔ and ݕ, and therefore ߤ and ܽ. Model tranche quotes are

computed by Matrix Exponentiation method for its high efficiency and accuracy. Since the

whole period spans ܶ ൌ 4.6 years and the coupon payment date is ݐଵ ൌ 0.1 and ݐ ൌ ଵݐ

0.25ሺ݅ െ 1ሻ for ݅ ൌ 2,⋯ ,18 , the Matrix Exponentiation method only needs compute two

transition matrices, ܳ.ଵ and ܳ.ଶହ, for time interval ∆ଵൌ 0.1 and ∆ଶൌ 0.25, then the transition

matrix ܳ௧ for all the other coupon payment dates can be computed as:

ܳ௧భ ൌ ܳ.ଵ								ܽ݊݀								ܳ௧ ൌ ܳ௧షభ ∙ ܳ.ଶହ , ݅ ൌ 2,⋯ ,18 (25)

This greatly reduces the computational time for the Matrix Exponentiation method.

 Nelder-Mead Simplex [6] algorithm is used to minimize the residual. The process starts

from an initial guess ߤ ൌ 1 and ܽ ൌ 2, and ends with optimal values ߤ ൌ 	3.4534 and ܽ ൌ 1.0

after 53 iterations. The minimal residual at the optimal solution is ߳ ൌ 8.435 and its

decomposition to each tranche is shown in Table 1. As you can see, the performance of model-

fitting is very poor as all of the modeled values are greatly off of the market values. However,

given the meaningful ranges for the parameters, this is the best solution we can obtain. Note that

if ܽ ൌ 1.0, the model is no longer dependent on ߤ and this is equivalent to the case when ߤ ൌ ∞.

Therefore the optimal solution to our problem is not unique, instead it is a union:

ሼሺߤ, ܽሻ ∶ ܽ ൌ 1, ߤ 0ሽ ∪ ሼሺߤ, ܽሻ ∶ ߤ ൌ ∞, ܽ 1ሽ (26)

15

Table 1. Residue decomposition at optimal solution
ߤ) ൌ 	3.4534 and ܽ ൌ 1.0)

Tranche # Kd Ku Market Model Residue

1 0.00000 0.03000 0.68000 0.94691 0.39252

2 0.03000 0.07000 0.37250 0.84517 1.26892

3 0.07000 0.10000 0.08750 0.73032 7.34653

4 0.10000 0.15000 0.03360 0.16071 3.78312

5 0.15000 0.30000 0.01085 0.00738 0.31996

6 0.30000 1.00000 0.00525 0.00000 1.00000

To illustrate this property, the residue as a function of ߤ and ܽ is computed in the range

of ߤ ∈ ሾ0.001, 1000ሿ and ܽ ∈ ሾ1, 10ሿ and shown in Figure 4. The axes of ߤ has taken a

logarithmic transformation for a better visualization. It clearly shows that the global minimal of

residual is at the domain edges ܽ ൌ 1 and ߤ ൌ ∞. Monte Carlo simulation exhibits the same

feature. Since Monte Carlo simulation is much slower than matrix exponentiation, Figure 5 is

generated on a much coarser grid.

Figure 4. R

Figure 5. R

Residue as a

Residue as a

a function of

function of ߤ

16

f and ܽ, obt ߤ

and ܽ, obt ߤ

tained by M

tained by Mo

Matrix Expon

onte Carlo si

nentiation

imulation

 F

time evo

a homog

distributi

case for

Calibrati

reason fo

of CDS i

the name

estimate

this may

model st

keep grow

F
a
E

igure 6 show

lution of the

geneous port

ion with eac

real markets

on of this m

or this is that

in the marke

es have over

the average

not be of h

till does not

wing unboun

Figure 6. De
and ܽ and ܶ
Exponentiati

ws the defau

e distribution

folio with in

ch name has

s. As the m

model to ma

t, we estima

et, the hazard

rwhelmingly

of hazard ra

help eventua

t show conv

ndedly.

efault distrib
ܶ ൌ 4.6 , ge
ion method (

ult distributi

n function. W

ndependent

 a default p

odel has on

arket data tu

ate the homo

d rate could

y high clean

ate weighted

ally, as relax

vergence pro

bution functi
enerated by
(blue).

17

ion function

With the opt

names. Thu

robability,

ly two param

urns out to b

genous haza

be highly o

spreads. A

d by the mark

xing the haz

operty throu

ion (Portfoli
y Monte Ca

n when ܶ ൌ

timal ߤ and ܽ

us the defaul

 ൌ 1 െ ݁ିఒ

meters, it is

be extremel

ard rate ߣ by

overestimate

simple impr

ket capitaliz

ard rate to b

ugh optimiza

io loss func
arlo method

4.6, and Fig

ܽ, the mode

lt process fo

ఒ். This is ap

s highly rest

ly challengin

y take the av

d because a

rovement to

zation of the

be the third

ation. The v

ction) with o
d (red) and

gure 7 show

el indeed ass

ollows a bino

pparently no

trictive and

ng. One pos

verage of a b

small numb

the method

names. How

parameter i

values of ߤ a

optimal ߤ
d Matrix

ws the

sumes

omial

ot the

rigid.

ssible

basket

ber of

d is to

wever

in the

and ܽ

F
w

4. Conclu

 T

process.

simulatio

much fas

 C

quite sim

example,

markets,

than tho

process:

to aggreg

Figure 7. Tim
with optimal

usions

The process

Default dist

on or matrix

ster than Mo

Calibration o

mple and hig

, it assumes

as some of

se with sma

ground state

gate if cluste

me evolution
l ߤ and ܽ (ge

described b

tribution fun

exponentiat

nte Carlo sim

f the model

hly restrictiv

s a constant

f the names

all spreads.

e and excited

ering defaul

n of default
enerated by M

by Davis-Lo

nction of the

tion. Since m

mulation.

to the mark

ve. It impose

t homogeneo

with except

Secondly,

d state. How

lts occur. Im

18

distribution
Matrix Expo

 model is a

e process ca

matrix expon

ket data is n

es many unr

ous hazard

ionally high

the model a

wever, in the

mprovements

function (Po
onentiation).

a piecewise

an be easily

nentiation is

not very succ

realistic assu

rate. This i

h clean sprea

assumes onl

e real market

s to this mod

ortfolio loss
.

determinist

constructed

s a direct me

cessful, beca

umptions to

is obviously

ad are more

ly two state

t, default ha

del can be m

function)

ic Markov

d by Monte C

ethod, it perf

ause the mod

the problem

y not true in

 prone to de

es for the w

azard is more

made by rela

chain

Carlo

forms

del is

m. For

n the

efault

whole

e like

axing

19

some of the constraints. By introducing more parameters into this model, it enhances the model’s

flexibility and make the model more dynamic, and therefore leads to better fitting to the market

data.

20

REFERENCES

1. Duffie, D.;Singleton, K., simulation correlated defaults, Working paper, 1998, Graduate

School of Business, Stanford University

2. Duffie, D.; Garleanu, N., Risk and valuation of collateralized debt obligations, Working
paper, 1999, Graduate School of Business, Stanford University

3. Davis M.H.A.; Lo, V., Infectious defaults, Quantitative Finance, 2001, 1(4), pp 382–387

4. Davis M.H.A.; Lo, V., Modeling default correlation in bond portfolios, Mastering Risk vol
2: Applications, Financial Times/Prentice-Hall, pp. 141-151

5. Arnsdorf, M.; Halperin, I., BSLP: Markovian Bivariate Spread-Loss Model for Portfolio
Credit Derivatives, Journal of Computational Finance, 2008, vol 12(2)

6. J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal,
1965, vol 7, pp 308–313

Page 1

1 # This program is written in Python v2.6, libraries required are:
2 # numpy, scipy, matplotlib, xlrd, xlwt
3 # This program demostrates the Davis-Lo model and calibrates the model to

market data
4 #
5 # It reads in the data from 2 sources:
6 # 'Inputs_for_model_calibration.xls' :
7 # contains all the market data necessary for model calibration. The

program reads in and
8 # preprocess the data.
9 # 'Inputs.xls' :
10 # contains some extra constants for the program to run, such as

parameters for Monte Carlo
11 # simulation, etc.
12 #
13 # Optimal solution mu and a are output to an excel file called 'Outputs.xls'
14 #
15 # Author: Changwei Xiong
16 # Date: 12/09/2009
17
18 import numpy as np
19 from scipy import optimize as spopt, linalg as spla
20 import matplotlib.pyplot as mp
21 from matplotlib import cm
22 from mpl_toolkits.mplot3d import Axes3D
23 from random import random as rand
24 from math import log, log10, ceil, floor, modf, exp, sqrt
25 import time
26 import datetime as dt
27 from xlrd import open_workbook, cellname, xldate_as_tuple
28 from xlwt import Workbook
29
30 class DavisLo(object):
31
32 # constructor, reads from input files and initializes the constants
33 def __init__(self):
34 ret = self.read_xls('Inputs.xls', 'Inputs_for_model_calibration.xls')
35
36 self.M = int(ret['M']) # timesteps
37 self.P = int(ret['P']) # Monte Carlo trials
38 self.r = float(ret['rf']) # risk free rate
39 T = float(ret['T']) # time period
40 delta = float(ret['delta']) # coupon payment day fraction
41
42 self.lmd = float(ret['lambda']) # lambda
43 self.R = float(ret['recovery']) # recovery rate
44 self.mkt_tr = ret['market_tranches'] # market tranche quotes
45 self.N = int(ret['total_names']) # number of total names
46 self.ix = float(ret['ix']) # initial guess for x : mu = x*x
47 self.iy = float(ret['iy']) # initial guess for y : a = y*y+1
48
49 self.Di = [x*delta for x in [modf(T/delta)[0]]+[1]*int(modf(T/delta)[1

])] # time slices
50 self.Ti = [sum(self.Di[:i]) for i in xrange(len(self.Di)+1)] # times
51 self.Bi = [exp(-self.r*t) for t in self.Ti] # discounts
52
53 # main program, everything is done here!!!
54 # please comment/uncomment to toggle the features
55 def final(self):
56 mp.close()
57

Page 2

58 # optimization routine for finding optimal solution
59 (x, y) = spopt.fmin(self.residue_xy, (self.ix, self.iy))
60 mu = max(x**2, 1e-8) # mu > 0
61 a = y**2 + 1 # a >= 1
62
63 print '\nOptimal Solution: mu = %.6f, a = %.6f'%(mu, a)
64 self.write_xls('Outputs.xls', mu, a)
65
66 ### plot default distribution function at optimal solution
67 ### takes 1-2 minutes to run, uncomment it to run
68 #self.plot_LossFunction(mu=mu, a=a)
69
70 ### make residue plot as a function of mu and a
71 ### takes 20 minutes to run, uncomment it to run
72 #self.plot_residue(1e-3, 1e3, 1, 10)
73
74 # make a 3-D plot of residue as a function of mu an a
75 def plot_residue(self, mu_d, mu_u, a_d, a_u):
76 # meshgrid of 30X30
77 MU = np.linspace(log10(mu_d), log10(mu_u), 30)
78 A = np.linspace(a_d, a_u, 30)
79 res = np.zeros((len(MU),len(A)))
80 for i, mu in enumerate(MU):
81 for j, a in enumerate(A):
82 res[i,j] = self.residue(10.0**mu, a, method='MC')
83 MUg, Ag = np.meshgrid(MU, A)
84 ax = Axes3D(mp.figure())
85 ax.plot_surface(MUg, Ag, res.T, rstride=1, cstride=1, cmap=cm.jet)
86 ax.set_xlabel('log(mu)', fontsize=16)
87 ax.set_ylabel('a', fontsize=16)
88 ax.set_zlabel('residue', fontsize=16)
89 mp.suptitle('Residue Plot for %.3f < mu < %.3f and %.3f < a < %.3f'\
90 %(mu_d, mu_u, a_d, a_u),\
91 fontsize=16)
92 mp.show()
93
94 # loss function (i.e. default probability function)
95 def plot_LossFunction(self, mu, a):
96 width = 0.4
97 st = 0
98 ed = self.N+1
99 index = -1
100 Pr = self.MonCar(mu, a)# monte carlo method
101 mp.bar(np.arange(st,ed)-width, Pr[index][st:ed], width, color='r')
102 Pr = self.MatExp(mu, a)# matrix exponentiation
103 mp.bar(np.arange(st,ed), Pr[index][st:ed], width, color='b')
104 mp.xlim(st,ed)
105 mp.xlabel('# defaults')
106 mp.ylabel('Probability')
107 mp.title('Default Dist. Function with mu = %.4f and a = %.4f' % (mu,a))
108
109 #plot 3-D default distribution function
110 Nt = np.arange(self.N+1)
111 Ti = np.array(self.Ti)
112 Ti, Nt = np.meshgrid(Ti, Nt)
113 Pr = np.array(Pr).T
114 Pr[Pr>0.3] = 0.3 # clamp the steep peak for visualization
115 ax = Axes3D(mp.figure())
116 ax.plot_surface(Ti, Nt, Pr, rstride=1, cstride=1, cmap=cm.jet)
117 ax.set_zlim3d(0, 0.3)
118 ax.set_xlabel('Ti', fontsize=16)

Page 3

119 ax.set_ylabel('Nt', fontsize=16)
120 ax.set_zlabel('Probability', fontsize=16)
121 mp.suptitle('3-D Default Dist. Function', fontsize=16)
122
123 mp.show()
124
125 # expected tranche loss function
126 def ELoss(self, P, Kd, Ku):
127 v = (1-self.R)/self.N
128 return sum(p*(max(i*v-Kd,0)-max(i*v-Ku,0))/(Ku-Kd) for i, p in enumerate

(P))
129
130 # compute tranche spread or upfront payment from model
131 def Model_SP_UP(self, Pr, tr):
132 Kd = tr['Kd']
133 Ku = tr['Ku']
134 B = np.array(self.Bi)
135 D = np.array(self.Di)
136 EL = np.array([self.ELoss(P, Kd, Ku) for P in Pr])
137 DL = np.dot(0.5*(B[:-1]+B[1:]), EL[1:]-EL[:-1])
138 RA = np.dot(D*B[1:], 1-0.5*(EL[:-1]+EL[1:]))
139 #print DL, RA
140 return DL-0.05*RA if tr['UP']>0 else DL/RA
141
142 # change of variables
143 def residue_xy(self, param):
144 mu = max(param[0]**2, 1e-8) # mu > 0
145 a = param[1]**2 + 1 # a > 1
146 return self.residue(mu, a)
147
148 #residual calculation, primarily use matrix exponentiation
149 def residue(self, mu, a, method='ME'):
150 st = time.time()
151 if method == 'ME':
152 Pr = self.MatExp(mu=mu, a=a)
153 else:
154 Pr = self.MonCar(mu=mu, a=a)
155
156 resid = 0.0
157 print ('%s\t\t'*5)%('Kd', 'Ku', 'market', 'model', 'residue')
158 for i, tr in enumerate(self.mkt_tr):
159 if 1 or i in (0, 5):
160 mkt = tr['UP'] if tr['UP'] > 0 else tr['SP']
161 spup = self.Model_SP_UP(Pr,tr)
162 resid += (1-spup/mkt)**2.0
163 print ('%.5f\t\t'*5)%(tr['Kd'], tr['Ku'], mkt, spup, abs(1-spup/

mkt))
164 resid = sqrt(resid)
165 self.mu = mu
166 self.a = a
167 print 'Total residue = %.4f, mu = %.6f, a = %.6f' % (resid, mu, a)
168 print 'time elapsed :%.4f seconds' % (time.time()-st)
169 print
170
171 return resid
172
173 # write the outputs to an excel file
174 def write_xls(self, filename, mu, a):
175 wb = Workbook()
176 ws = wb.add_sheet('Outputs')
177

Page 4

178 # for your reference, output some of the constants
179 # used in the models to the output file
180 ws.write(0,0,'Some of the constants used:');
181 ws.write(1,0,'lambda');
182 ws.write(1,1,self.lmd)
183 ws.write(2,0,'recovery rate');
184 ws.write(2,1,self.R)
185 ws.write(3,0,'T');
186 ws.write(3,1,self.Ti[-1])
187 ws.write(4,0,'# names');
188 ws.write(4,1,self.N)
189 ws.write(5,0,'risk free rate');
190 ws.write(5,1,self.r)
191
192 # save solution to the output file
193 ws.write(7,0,'Optimal Solution:');
194 ws.write(8,0,'mu');
195 ws.write(8,1,mu)
196 ws.write(9,0,'a');
197 ws.write(9,1,a)
198
199 wb.save(filename)
200
201 # inputs parser
202 def read_xls(self, inputfile, datafile):
203 # read in input data
204 book = open_workbook(filename=inputfile)
205 for sheetid in xrange(book.nsheets):
206 sheet = book.sheet_by_index(sheetid)
207 if sheet.name == 'Input':
208 ncol = 0
209 dcol = 2
210 stcl = sheet.cell
211 for row in xrange(sheet.nrows):
212 if stcl(row, ncol).value == 'Monte Carlo timesteps':
213 MCsteps = stcl(row,dcol).value
214 if stcl(row, ncol).value == 'Monte Carlo trials':
215 MCpaths = stcl(row,dcol).value
216 if stcl(row, ncol).value == 'risk free rate':
217 rf = stcl(row,dcol).value
218 if stcl(row, ncol).value == 'tranche time period':
219 timeperiod = stcl(row,dcol).value
220 if stcl(row, ncol).value == 'coupon day fraction':
221 dayfrac = stcl(row,dcol).value
222 if stcl(row, ncol).value == 'initial guess for x':
223 ix = stcl(row,dcol).value
224 if stcl(row, ncol).value == 'initial guess for y':
225 iy = stcl(row,dcol).value
226
227 # read in credit portfolio tranche data
228 book = open_workbook(filename=datafile)
229 for sheetid in xrange(book.nsheets):
230 sheet = book.sheet_by_index(sheetid)
231 if sheet.name == 'CDX IG11 single name data':
232 hdrow = 0
233 col5y = 0
234 colR = 0
235 names = sheet.nrows-1
236 stcl = sheet.cell
237 for col in xrange(sheet.ncols):
238 if stcl(hdrow, col).value == '5Y clean':

Page 5

239 col5y = col
240 if stcl(hdrow, col).value == 'recovery':
241 colR = col
242 lmd = sum(stcl(row,col5y).value/(1-stcl(row,colR).value) \
243 for row in xrange(1,sheet.nrows))\
244 /names/10000.0
245 R = sum(stcl(row, colR).value for row in xrange(1,sheet.nrows))/

names
246 if sheet.name == 'CDX IG11 tranche quotes':
247 hdrow = 0
248 colup = 0
249 colsprd = 0
250 colk1 = 0
251 colk2 = 0
252 coldt = 0
253 stcl = sheet.cell
254 for col in xrange(sheet.ncols):
255 if stcl(hdrow, col).value == 'Lower':
256 colk1 = col
257 if stcl(hdrow, col).value == 'Upper':
258 colk2 = col
259 if stcl(hdrow+1, col).value == 'Maturity':
260 coldt = col
261 if stcl(hdrow+1, col).value == 'Payment (%)':
262 colup = col
263 if stcl(hdrow+1, col).value == 'Fee (bps)':
264 colsp = col
265 mkt_tr = []
266 for row in xrange(hdrow+2, sheet.nrows):
267 if dt.date(*xldate_as_tuple(stcl(row, coldt).value, 0)[:3]).

year == 2013:
268 mkt_tr.append({'Kd':float(stcl(row, colk1).value),
269 'Ku':float(stcl(row, colk2).value),
270 'UP':float(stcl(row, colup).value),
271 'SP':float(stcl(row, colsp).value)/

10000.0})
272 mkt_tr.sort(cmp=lambda x,y:cmp(x['Kd'], y['Kd']))
273
274 return {'M':MCsteps,
275 'P':MCpaths,
276 'rf':rf,
277 'T':timeperiod,
278 'delta':dayfrac,
279 'ix':ix,
280 'iy':iy,
281 'lambda':lmd,
282 'total_names':names,
283 'market_tranches':mkt_tr,
284 'recovery': R}
285
286 # Monte Carlo Simulation
287 def MonCar(self, mu, a):
288 mu = float(mu)
289 a = float(a)
290 N = self.N
291 M = self.M
292 P = self.P
293 lmd = self.lmd
294 dt = self.Ti[-1]/M
295 idx = [int(round(t/dt)) for t in self.Ti]+[-1]
296 pr = [[0.0]*(N+1) for t in self.Ti]

Page 6

297
298 lmd_dt = lmd*dt
299 a_lmd_dt = a*lmd_dt
300 for p in xrange(P):
301 n = 0
302 x = 0
303 h = 0
304 ii = idx[h]
305 for i in xrange(M+1):
306 if i == ii:# ii = premium payment time index
307 pr[h][n] += 1
308 h += 1
309 ii = idx[h]
310 t = dt * i
311 def_pr = (N-n) * (a_lmd_dt if t < x else lmd_dt)
312 if def_pr > rand() and n < N: # default occurs
313 n += 1
314 x = t - log(1.0-rand())/mu # exp. dist. y = 1-exp(-mu*x)
315 return (np.array(pr)/P).tolist()
316
317 # Matrix Exponentiation Method
318 def MatExp(self, mu, a):
319 N = self.N
320 lmd = self.lmd
321 A = np.zeros((2*(N+1), 2*(N+1)))
322 for i in xrange(N):
323 j = 2*i
324 A[j , j] = -lmd*(N-i)
325 A[j+1, j] = mu
326 A[j+1, j+1] = -mu - a*lmd*(N-i)
327 A[j , j+3] = lmd*(N-i)
328 A[j+1, j+3] = a*lmd*(N-i)
329
330 pr = []
331 #for t in self.Ti:
332 # pm = spla.expm(A*t);
333 # pr.append((pm[0,::2]+pm[0,1::2]).tolist())
334
335 pm0 = np.eye(2*(N+1))
336 pr.append((pm0[0,::2]+pm0[0,1::2]).tolist())
337 pm1 = spla.expm(A*self.Di[0])
338 pr.append((pm1[0,::2]+pm1[0,1::2]).tolist())
339 pm2 = spla.expm(A*self.Di[1])
340 pm = pm1
341 for t in self.Ti[2:]:
342 pm = np.dot(pm, pm2)
343 pr.append((pm[0,::2]+pm[0,1::2]).tolist())
344 return pr
345
346
347 if __name__ == '__main__':
348 try:
349 import psyco
350 psyco.full()
351 print 'Running psyco to speed up...'
352 except:
353 pass
354
355 DavisLo().final()
356

	Changwei_Xiong_CreditRiskModeling_Project
	Changwei_Xiong_CreditRiskModeling_Project_Code

